• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반 이미지 자동인식 기술을 활용한 사무집기 자동인식과 정보관리 시스템과의 연동방안 (Approach to Interworking between the Deep Learning-based Object Detection of Office Furniture and Appliances and Information Management System)

8 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2017.12
8P 미리보기
딥러닝 기반 이미지 자동인식 기술을 활용한 사무집기 자동인식과 정보관리 시스템과의 연동방안
  • 미리보기

    서지정보

    · 발행기관 : 한국퍼실리티매니지먼트학회
    · 수록지 정보 : 한국퍼실리티매니지먼트학회지 / 12권 / 2호 / 73 ~ 80페이지
    · 저자명 : 김진성, 송재열, 김하얀, 이진국

    초록

    This paper aims to propose an approach to auto-recognition of office objects using non-professionally taken indoor pictures based on the deep learning technique. Recently, artificial intelligence(AI) has been applied in broad fields of industry. Especially, the deep learning-based image recognition and object detection technologies are attaining a high level of accuracy close to human capability. In addition, its source technology has been open to the public, allowing people to use it according to their own purpose. According to the AI trend, deep-learning also has been actively studied in the field of building technology. This paper describes an approach to utilizing image recognition at the phase of facility management (FM) and the process for verifying the possibility of adapting up-to-date technologies in FM fields. The procedure of this study includes data collection, data preprocessing, deep learning-based model training and office indoor image auto-recognition test for detecting office objects. The target office objects include office desks, office chairs and electronic devices, which are most commonly seen in the office space. Over 200 indoor images including target office objects are collected from the domestic office furniture firms' catalog for model training and testing. The results of test with new indoor image are analyzed as the factor of accuracy and similarity of detected office objects. This paper also depicts the potential to apply the auto-recognition technique with BIM(Building Information Modeling) for supporting CAFM (Computer-Aided Facility Management).

    영어초록

    This paper aims to propose an approach to auto-recognition of office objects using non-professionally taken indoor pictures based on the deep learning technique. Recently, artificial intelligence(AI) has been applied in broad fields of industry. Especially, the deep learning-based image recognition and object detection technologies are attaining a high level of accuracy close to human capability. In addition, its source technology has been open to the public, allowing people to use it according to their own purpose. According to the AI trend, deep-learning also has been actively studied in the field of building technology. This paper describes an approach to utilizing image recognition at the phase of facility management (FM) and the process for verifying the possibility of adapting up-to-date technologies in FM fields. The procedure of this study includes data collection, data preprocessing, deep learning-based model training and office indoor image auto-recognition test for detecting office objects. The target office objects include office desks, office chairs and electronic devices, which are most commonly seen in the office space. Over 200 indoor images including target office objects are collected from the domestic office furniture firms' catalog for model training and testing. The results of test with new indoor image are analyzed as the factor of accuracy and similarity of detected office objects. This paper also depicts the potential to apply the auto-recognition technique with BIM(Building Information Modeling) for supporting CAFM (Computer-Aided Facility Management).

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 19일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:25 오후