• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

일반화된 캐스케이드 코릴레이션 알고리즘과 일반화된 순환 캐스케이드 코릴레이션 알고리즘의 결합을 통한 학습 능력 향상 (Improvement of Learning Capability with Combination of the Generalized Cascade Correlation and Generalized Recurrent Cascade Correlation Algorithms)

9 페이지
기타파일
최초등록일 2025.03.03 최종저작일 2009.02
9P 미리보기
일반화된 캐스케이드 코릴레이션 알고리즘과 일반화된 순환 캐스케이드 코릴레이션 알고리즘의 결합을 통한 학습 능력 향상
  • 미리보기

    서지정보

    · 발행기관 : 한국콘텐츠학회
    · 수록지 정보 : 한국콘텐츠학회 논문지 / 9권 / 2호 / 97 ~ 105페이지
    · 저자명 : 이상화, 송해상

    초록

    본 논문에서는 일반화된 캐스케이드 코릴레이션 학습 알고리즘과 일반화된 순환 캐스케이드 코릴레이션 학습 알고리즘의 결합을 통한 새로운 알고리즘을 소개한다. 이 새로운 알고리즘은 패턴분류문제(pattern classification problem)의 신속한 해결을 위하여 비순환 뉴런이 유리한지 순환 뉴런이 유리한지 또는 수직성장이 유리한지 수평성장이 유리한지 고민할 필요 없이 후보뉴런의 학습 중에 네트워크의 구성을 스스로 결정한다. 이 알고리즘의 성능평가를 위하여 학습 알고리즘에서 중요한 기준 문제(benchmark problem) 중의 하나인 콘택트렌즈 문제(Contact lens problem)와 밸런스 스케일 문제 (Balance scale problem)에 대하여 실험하였고 기존의 캐스케이드 코릴레이션 알고리즘 및 순환 캐스케이드 코릴레이션 알고리즘과 성능을 비교 하였다. 이 실험에서 활성화 함수는 일반적으로 많이 사용하는 시그모이드 함수(sigmoidal function) 와 하이퍼볼릭탄젠트 함수(hyperbolic tangent function)를 사용하였다. 이 새로운 알고리즘은 학습을 통하여 기존의 알고리즘보다 적은 수의 은닉뉴런을 생성하여 보다 빠른 학습 속도를 보여주었다.

    영어초록

    This paper presents a combination of the generalized Cascade Correlation and generalized Recurrent Cascade Correlation learning algorithms. The new network will be able to grow with vertical or horizontal direction and with recurrent or without recurrent units for the quick solution of the pattern classification problem. The proposed algorithm was tested learning capability with the sigmoidal activation function and hyperbolic tangent activation function on the contact lens and balance scale standard benchmark problems. And results are compared with those obtained with Cascade Correlation and Recurrent Cascade Correlation algorithms. By the learning the new network was composed with the minimal number of the created hidden units and shows quick learning speed. Consequently it will be able to improve a learning capability.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국콘텐츠학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 21일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:34 오후