총 34개
-
OpenCV를 이용한 공간 향상 기법 결합2025.12.161. 공간 필터링 기법 Laplacian 필터와 Sobel 필터를 이용한 영상 처리 기법을 설명합니다. Laplacian 필터는 영상의 엣지를 검출하고, Sobel 필터는 x, y 방향의 그래디언트를 계산하여 엣지를 강조합니다. 이러한 필터들을 조합하여 영상의 선명도를 향상시키는 과정을 단계별로 구현합니다. 2. 영상 선명화 알고리즘 입력 영상에서 Laplacian 필터 결과를 빼서 선명화된 영상을 생성하고, Sobel 필터 결과를 평균 필터로 부드럽게 처리한 후 곱하여 마스크를 만듭니다. 이 마스크를 원본 영상에 더하여 최종 선명...2025.12.16
-
MCMC를 활용한 베이지안 추론 - 동전 던지기 문제의 확률 추정 (파이썬예제풀이 포함)2025.05.091. MCMC(Markov Chain Monte Carlo) MCMC는 머신러닝과 통계학 분야에서 중요한 역할을 하는 AI(인공지능) 기법 중 하나입니다. MCMC는 복잡한 확률분포를 추정하거나 샘플링하기 위해 사용되며, 특히 베이지안 추론과 관련된 문제에 유용하게 적용됩니다. MCMC는 몬테카를로(Monte Carlo) 방법과 마코프 체인(Markov Chain)을 결합한 알고리즘으로, 마코프 체인을 이용하여 탐색 공간을 효과적으로 탐색하고 샘플링을 수행합니다. 2. 동전 던지기 문제 동전 던지기 문제는 간단하면서도 직관적인 문제...2025.05.09
-
OpenCV python으로 여러가지 필터 적용하여 영상 선명하게 만들기2025.05.061. 필터 적용을 통한 영상 선명화 이 프로젝트에서는 OpenCV와 Python을 사용하여 다양한 필터를 적용하여 흉부 X선 영상을 선명하게 만드는 방법을 다룹니다. 사용된 필터에는 GaussianBlur, Averaging, Laplacian, Sobel, Gamma Correction, Equalization 등이 있으며, 각 필터의 특성과 적용 방법, 그리고 최종 결과물을 보여줍니다. 코드 구현 과정과 실행 결과를 자세히 설명하고 있습니다. 1. 필터 적용을 통한 영상 선명화 영상 선명화를 위한 필터 적용은 다양한 방법으로 이...2025.05.06
-
Stress Strength Analysis에서 겹친 부분에 대한 이해 (응력 강도의 신뢰성 분석) - 파이썬 소스 코드 포함2025.05.111. Stress Strength Analysis 구조물이나 소재의 안전성을 평가할 때, stress와 strength 사이의 상호작용은 중요한 요소입니다. Stress는 구조물이나 소재에 가해지는 응력을 의미하며, strength는 해당 구조물이나 소재가 견딜 수 있는 강도를 나타냅니다. 가장 기본적인 해석은 Stress값이 Strength를 넘어서면 파괴가 발생한다는 것입니다. 그러나 파괴 이벤트는 단순히 두 값의 비교로 이루어지는 것만이 아닙니다. 실제로는 Stress와 Strength가 확률분포로써 결정되기 때문에, 파괴 이...2025.05.11
-
MCMC 모델링2025.05.091. MCMC (Markov Chain Monte Carlo) MCMC는 확률적인 모델링과 추론을 위해 사용되는 강력한 도구입니다. MCMC는 샘플링 알고리즘 중 하나로, 타겟 분포로부터 샘플을 추출하는 기법입니다. 이를 통해 우리는 원하는 분포로부터 난수를 생성하거나, 분포의 특성을 파악하는데 도움을 얻을 수 있습니다. 2. 정규분포 샘플링 이 예제에서는 MCMC를 사용하여 정규분포로부터 샘플을 추출하는 방법을 살펴봅니다. 정규분포는 많은 자연 현상을 모델링할 때 사용되는 중요한 분포 중 하나이므로, MCMC를 통해 정규분포로부터...2025.05.09
-
데이터의 자료구조 중 스택과 큐 비교 및 구현2025.01.181. 스택 구조 스택(Stack)은 데이터가 나중에 들어온 것이 먼저 나가는(LIFO, Last In First Out) 자료구조입니다. 스택은 데이터를 한쪽 끝에서만 추가하고 제거할 수 있으며, 이 끝부분을 '탑(top)'이라고 부릅니다. 스택은 주로 push와 pop 연산을 제공하며, 재귀적인 함수 호출, 수식의 후위 표기법 변환 및 계산, 깊이 우선 탐색 등 다양한 응용 분야에서 사용됩니다. 2. 큐 구조 큐(Queue)는 데이터가 먼저 들어온 것이 먼저 나가는(FIFO, First In First Out) 자료구조입니다. 큐...2025.01.18
-
프로그램 언어의 역사, 특징, 장.단점2025.05.061. 프로그래밍 언어 프로그래밍 언어는 기계와 인간이 이해할 수 있는 형태로 문제를 해결하기 위해 사용되는 도구입니다. 저급언어와 고급언어의 차이점은 사용자 중심의 언어인지, 하드웨어 중심의 언어인지에 있습니다. 저급언어는 기계어와 어셈블리어로 구성되며 컴퓨터만 이해할 수 있는 언어입니다. 고급언어는 절차지향 언어와 객체지향 언어로 구분되며 사용자가 이해하기 쉽고 이식성이 높습니다. 2. C 언어 C 언어는 1972년 데니스 리치에 의해 개발되었으며, 시스템 프로그래밍과 응용 프로그래밍에 널리 사용되는 범용 프로그래밍 언어입니다. ...2025.05.06
-
파이썬으로 트윙클 트윙클 연주하기2025.05.101. Python으로 음악 작곡하기 Python은 강력한 프로그래밍 언어로써, music21 라이브러리와 함께 사용하면 음악 작곡에도 탁월한 도구로 활용할 수 있습니다. 이 예제에서는 'Twinkle, Twinkle, Little Star' 곡을 피아노로 연주하고 MIDI 파일로 저장하는 방법을 보여줍니다. 또한 다른 악기로 연주하는 방법도 설명합니다. Python의 자동화와 반복문 기능을 활용하면 대량의 음악을 생성하거나 변형할 수 있습니다. 2. music21 라이브러리 music21 라이브러리는 Python에서 음악을 작곡하고...2025.05.10
-
단 3개의 데이터만 가지고 모델 추정하기 (베이지안 추정, Python source code 예제 포함)2025.05.131. 베이지안 추정 베이지안 추정은 제한된 데이터를 활용하여 미지의 모델 매개변수를 추정하는 방법입니다. 이 예제에서는 PyMC3 라이브러리를 사용하여 베이지안 모델을 정의하고, MCMC 샘플링을 통해 매개변수의 사후 분포를 추출합니다. 이를 통해 불확실성을 고려하면서도 가능한 모든 시나리오를 종합적으로 고려하여 예측의 중심 경향을 나타낼 수 있습니다. 2. PyMC3 PyMC3는 확률적 프로그래밍 라이브러리로, 베이지안 모델링과 추론을 수행할 수 있습니다. 이 예제에서는 PyMC3를 사용하여 베이지안 모델을 정의하고, MCMC 샘...2025.05.13
-
파이썬 시험3 (답지 포함)2025.01.241. Python 코드 작성 및 실행 이 문제에서는 Python 코드를 작성하고 실행하는 능력을 평가합니다. 학생들은 주어진 코드의 일부를 완성하고, 새로운 코드를 작성하여 원하는 결과를 출력해야 합니다. 이를 통해 Python 프로그래밍 기초 지식과 문제 해결 능력을 확인할 수 있습니다. 2. 배열 생성 및 기본 연산 이 문제에서는 Python의 배열 생성 및 기본 연산 능력을 평가합니다. 학생들은 1차원 배열과 2차원 배열을 생성하고, 각 요소에 대한 연산을 수행해야 합니다. 이를 통해 Python의 배열 처리 기능에 대한 이해...2025.01.24
