• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료

유기화학실험 A+ Report 1 TLC

A+ 받은 레포트를 추가적으로 수정을 더하여 만든 레포트입니다. 레포트에서 놓치기 쉬운 작은 point를 포함하여 이론 및 과정, 결과, 고찰 모두 조교님의 도움을 받아 세세하게 적어두었습니다.
16 페이지
한컴오피스
최초등록일 2023.09.05 최종저작일 2022.09
16P 미리보기
유기화학실험 A+ Report 1 TLC
  • 미리보기

    소개

    A+ 받은 레포트를 추가적으로 수정을 더하여 만든 레포트입니다.
    레포트에서 놓치기 쉬운 작은 point를 포함하여 이론 및 과정,
    결과, 고찰 모두 조교님의 도움을 받아 세세하게 적어두었습니다.

    목차

    1. Title
    2. Date
    3. Principle & Object
    4. Material
    5. Procedure & Observation
    6. Result
    7. Discussion
    8. Reference

    본문내용

    (1) Use
    ① 시료 정제 모니터링
    ② 합성을 하기 위한 최적 조건을 빠르게 설정
    ③ Crude reaction mixture 검사
    ④ Sample의 동질성 결정
    이 외에도 다양한 곳에서 TLC가 사용된다.

    (2) Adsorbent (Stationary phase)
    Stationary phase의 종류로는 Silica gel, alumina, kieselguhr, cellulose powder등이 있다. 보통 극성 물질들이 Stationary phase와 잘 흡착하게 된다. 형광 화합물에 사용이 가능하며 mixture의 component의 resolution은 UV light로 확인 가능하다. Adsorbent는 hydrated calcium sulfate와 같은 접합제와 함께 혼합되어 glass plate 또는 plastic sheet에 layer를 고착시킨다. 가장 흔히 사용되는 Stationary phase는 silica gel이나 alumina이다.

    (3) preparation of plates
    실험에서 상업화된 TLC를 사용했기 때문에 TLC plate를 따로 제작할 필요는 없다.

    참고자료

    · https://www.merckmillipore.com/KR/ko methyl benzoate
    · https://www.merckmillipore.com/KR/ko Nitrobenzene
    · https://www.merckmillipore.com/KR/ko Methylene chloride
    · Organic Experiments Macroscale and Microscale, Kenneth L. Williamson, 7 edition, Brooks/Cole
    · http://msds.kosha.or.kr/ benzonitrile
    · http://msds.kosha.or.kr/ Benzyl bromide
    · http://msds.kosha.or.kr/ Potassium permanganate
    · http://msds.kosha.or.kr/ Phenol
    · http://msds.kosha.or.kr/ cis-Stilbene
    · http://msds.kosha.or.kr/ trans-Stilbene
    · http://msds.kosha.or.kr/ Phosphomolybdic Acid
    · https://www.merckmillipore.com/KR/ko diethyl ether
  • AI와 토픽 톺아보기

    • 1. Thin Layer Chromatography (TLC)
      Thin Layer Chromatography (TLC) is a widely used analytical technique in various fields, including chemistry, biochemistry, and pharmaceutical sciences. It is a simple, rapid, and cost-effective method for the separation, identification, and purification of a wide range of compounds. TLC is particularly useful for the analysis of complex mixtures, as it allows for the separation of individual components based on their relative affinities for the stationary and mobile phases. The technique involves the application of a sample onto a thin layer of adsorbent material, typically silica gel or alumina, coated on a glass, plastic, or aluminum plate. The plate is then placed in a solvent system, and the components of the sample migrate at different rates, depending on their polarity and interactions with the stationary phase. The separated components can be visualized using various techniques, such as UV light, chemical staining, or the use of specific reagents. TLC is a versatile tool that can be used for qualitative and quantitative analysis, as well as for the monitoring of chemical reactions and the purification of compounds. Its simplicity, flexibility, and ability to provide rapid results make it an indispensable technique in many areas of scientific research and industrial applications.
    • 2. Stationary Phase and Solvent System
      The stationary phase and solvent system are crucial components in Thin Layer Chromatography (TLC) that determine the separation and resolution of the analytes. The stationary phase, typically a thin layer of adsorbent material such as silica gel or alumina, acts as the medium through which the sample components migrate. The choice of stationary phase depends on the nature of the analytes, their polarity, and the desired separation. For example, polar stationary phases like silica gel are suitable for the separation of polar compounds, while non-polar phases like reversed-phase silica are used for non-polar analytes. The solvent system, or mobile phase, is the liquid that carries the sample components through the stationary phase. The selection of the solvent system is crucial, as it determines the rate of migration and the separation of the components. The solvent system can be a single solvent or a mixture of solvents, and its composition is chosen based on the polarity and solubility of the analytes. The combination of the stationary phase and the solvent system is known as the chromatographic system, and it must be carefully optimized to achieve the desired separation and resolution of the components in the sample. The proper selection and optimization of the stationary phase and solvent system are essential for the successful application of TLC in various analytical and preparative applications.
    • 3. Visualization and Staining
      Visualization and staining are essential steps in Thin Layer Chromatography (TLC) for the detection and identification of the separated components. After the sample has been separated on the TLC plate, the next step is to visualize the separated components. This can be done using various techniques, such as: 1. UV visualization: Compounds that absorb UV light can be detected directly on the TLC plate under a UV lamp, without the need for any additional staining. 2. Chemical staining: Specific reagents can be used to chemically react with the separated components, producing colored or fluorescent spots that can be observed. Common staining reagents include iodine vapor, ninhydrin (for amino acids), and vanillin (for sugars). 3. Derivatization: Some compounds may not be directly visible or may require specific detection methods. In such cases, the separated components can be derivatized, or chemically modified, to produce a detectable product. 4. Densitometry: Quantitative analysis can be performed by scanning the TLC plate using a densitometer, which measures the intensity of the spots and relates it to the concentration of the analytes. The choice of visualization and staining method depends on the nature of the analytes, their chemical properties, and the desired level of sensitivity and selectivity. Proper optimization of the visualization and staining techniques is crucial for the accurate identification and quantification of the separated components in TLC analysis. These steps provide valuable information about the composition and purity of the sample, making TLC a versatile and powerful analytical tool in various fields of study.
    • 4. Polarity and Rf Value
      Polarity and Rf (Retention factor) value are two important concepts in Thin Layer Chromatography (TLC) that are closely related and play a crucial role in the separation and identification of compounds. Polarity refers to the degree of charge distribution within a molecule, which determines its interactions with the stationary phase and the mobile phase. Polar compounds, such as alcohols, acids, and sugars, have a higher affinity for the stationary phase and tend to move more slowly on the TLC plate. Conversely, non-polar compounds, such as hydrocarbons and aromatic compounds, have a lower affinity for the stationary phase and move more quickly. The Rf value is a dimensionless quantity that represents the ratio of the distance traveled by a compound on the TLC plate to the distance traveled by the solvent front. The Rf value is calculated as: Rf = Distance traveled by the compound / Distance traveled by the solvent front The Rf value ranges from 0 to 1, with 0 indicating that the compound is completely retained by the stationary phase and 1 indicating that the compound moves at the same rate as the solvent front. The Rf value of a compound is influenced by several factors, including the polarity of the compound, the composition of the stationary and mobile phases, the temperature, and the development time. By comparing the Rf values of unknown compounds to those of known standards, it is possible to identify the components of a mixture and gain insights into their chemical properties. Understanding the relationship between polarity and Rf value is crucial for the successful application of TLC in various fields, such as analytical chemistry, organic synthesis, and natural product isolation and purification. Careful control and optimization of these parameters can lead to improved separation, identification, and quantification of the analytes of interest.
    • 5. Cis-trans Isomerism
      Cis-trans isomerism is a type of stereoisomerism in organic chemistry, where two molecules have the same molecular formula and connectivity but differ in the spatial arrangement of their atoms. In cis-trans isomerism, the focus is on the orientation of substituents around a carbon-carbon double bond or a ring structure. In a cis isomer, the substituents are on the same side of the double bond or ring, while in a trans isomer, the substituents are on opposite sides. This difference in spatial arrangement can lead to significant differences in the physical and chemical properties of the molecules, such as melting and boiling points, solubility, and reactivity. Cis-trans isomerism is particularly important in the study of organic compounds, as it can have a significant impact on the biological activity and function of molecules. For example, in the case of certain biomolecules, such as retinal (a component of the visual pigment rhodopsin), the cis-trans isomerization plays a crucial role in the visual perception process. The identification and separation of cis-trans isomers are often carried out using analytical techniques like Thin Layer Chromatography (TLC). The differences in polarity and interactions with the stationary and mobile phases can lead to distinct Rf values for the cis and trans isomers, allowing for their separation and identification. Understanding cis-trans isomerism is essential in various fields, including organic synthesis, medicinal chemistry, and biochemistry, as it provides insights into the structure-property relationships of organic compounds and their potential applications in diverse areas of science and technology.
  • 자료후기

      Ai 리뷰
      TLC의 다양한 응용 분야와 원리를 잘 설명하고 있으며, 실험 절차와 관찰 결과를 체계적으로 정리하여 제시하고 있습니다. 또한 실험 결과를 바탕으로 각 시료의 극성과 적합한 용매 시스템을 분석하여 제시하고 있습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2026년 01월 12일 월요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    11:51 오전