• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

의사결정트리 기반 기계학습을 이용한 식품교환표 식품군 분류 모델 (Classification Model of Food Groups in Food Exchange Table Using Decision Tree-based Machine Learning)

8 페이지
기타파일
최초등록일 2025.07.18 최종저작일 2022.12
8P 미리보기
의사결정트리 기반 기계학습을 이용한 식품교환표 식품군 분류 모델
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 신뢰성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🧬 기계학습을 활용한 혁신적인 식품군 분류 방법론 제시
    • 📊 97.45%의 높은 분류 정확도로 신뢰성 확보
    • 🏥 병원, 요양원 등 실무 현장에서 즉시 활용 가능한 실용적 모델

    미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 27권 / 12호 / 51 ~ 58페이지
    · 저자명 : 김지윤, 김종완

    초록

    본 논문에서 우리는 기존 식품과 웹 크롤링으로 찾은 식품 데이터에 대해 기계학습으로 식품군을 분류하여 식품교환표를 갱신하기 위한 의사결정트리 기반의 기계학습 모델을 제안한다. 식품교환표는 영양 관리가 필요한 환자의 식이요법이나 다이어트 식단을 편성할 때 식품 교환 섭취에사용된다. 식단의 기준이 되는 식품교환표는 국민건강영양조사를 통한 개정과정에서 많은 인력과시간이 소요되어 새로운 식품이나 트렌드에 따른 식품 변화를 신속하게 반영하기 어렵다. 제안기법은 기존의 식품군을 바탕으로 새롭게 추가되는 식품을 분류하기 때문에 식품의 트렌드를 반영한 식품교환표 구성이 가능하다. 연구에서 제안 모델로 식품을 분류한 결과, 식품교환표의 식품군에 대한 정확도가 97.45%로 나타났으며, 본 식품 분류 모델은 병원, 요양원 등에서 식단 구성에활용도가 높을 것으로 전망된다.

    영어초록

    In this paper, we propose a decision tree-based machine learning model that leads to food exchange table renewal by classifying food groups through machine learning for existing food and food data found by web crawling. The food exchange table is the standard for food exchange intake when composing a diet such as diet and diet, as well as patients who need nutritional management. The food exchange table, which is the standard for the composition of the diet, takes a lot of manpower and time in the process of revision through the National Health and Nutrition Survey, making it difficult to quickly reflect food changes according to new foods or trends. Since the proposed technique classifies newly added foods based on the existing food group, it is possible to organize a rapid food exchange table reflecting the trend of food. As a result of classifying food into the proposed model in the study, the accuracy of the food group in the food exchange table was 97.45%, so this food classification model is expected to be highly utilized for the composition of a diet that suits your taste in hospitals and nursing homes.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:15 오후