• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

홉필드 네트워크와 퍼지 Max-Min 신경망을 이용한 손상된 교통 표지판 인식 (Damaged Traffic Sign Recognition using Hopfield Networks and Fuzzy Max-Min Neural Network)

7 페이지
기타파일
최초등록일 2025.07.16 최종저작일 2022.11
7P 미리보기
홉필드 네트워크와 퍼지 Max-Min 신경망을 이용한 손상된 교통 표지판 인식
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🚦 교통 표지판 인식의 혁신적인 접근법 제시
    • 🧠 홉필드 네트워크와 퍼지 Max-Min 신경망의 독창적 결합
    • 📊 손상된 이미지 인식 성능을 평균 38.76% 개선

    미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 26권 / 11호 / 1630 ~ 1636페이지
    · 저자명 : 김광백

    초록

    현재 교통 표지판 인식 기법들은 다양한 날씨, 빛의 변화 등과 같은 외부환경 뿐만 아니라 교통 표지판이 일부 훼손된 경우에는 인식 성능이 저하되는 경우가 발생한다.
    따라서 본 논문에서는 이러한 문제점을 개선하기 위하여 홉필드 네트워크와 퍼지 Max-Min 신경망을 이용하여 손상된 교통 표지판의 인식 성능을 개선하는 방법을 제안한다. 제안된 방법은 손상된 교통 표지판에서 특징들을 분석한 후, 그 특징들을 학습 패턴으로 구성하여 퍼지 Max-Min 신경망에 적용하여 1차적으로 교통 표지판의 특징을 분류한다. 1차적 분류된 특징이 있는 학습 영상들을 홉필드 네트워크에 적용하여 손상된 특징을 복원한다. 홉필드 네트워크를 적용하여 복원된 교통 표지판의 특징들을 다시 퍼지 Max-Min 신경망에 적용하여 최종적으로 손상된 교통 표지판을 분류하고 인식한다. 제안된 방법의 성능을 평가하기 위하여 손상된 정도가 다른 다양한 교통 표지판 8개를 적용하여 실험한 결과, 제안된 방법이 퍼지 Max-Min 신경망에 비해 평균적으로 38.76%의 분류 성능이 개선되었다.

    영어초록

    The results of current method of traffic sign detection gets hindered by environmental conditions and the traffic sign’s condition as well.
    Therefore, in this paper, we propose a method of improving detection performance of damaged traffic signs by utilizing Hopfield Network and Fuzzy Max-Min Neural Network. In this proposed method, the characteristics of damaged traffic signs are analyzed and those characteristics are configured as the training pattern to be used by Fuzzy Max-Min Neural Network to initially classify the characteristics of the traffic signs. The images with initial characteristics that has been classified are restored by using Hopfield Network. The images restored with Hopfield Network are classified by the Fuzzy Max-Min Neural Network onces again to finally classify and detect the damaged traffic signs. 8 traffic signs with varying degrees of damage are used to evaluate the performance of the proposed method which resulted with an average of 38.76% improvement on classification performance than the Fuzzy Max-Min Neural Network.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 09일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:35 오전