PARTNER
검증된 파트너 제휴사 자료

효율적인 feature map 추출 네트워크를 이용한2D 이미지에서의 3D 포인트 클라우드 재구축 기법 (3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network)

8 페이지
기타파일
최초등록일 2025.07.13 최종저작일 2022.09
8P 미리보기
효율적인 feature map 추출 네트워크를 이용한2D 이미지에서의 3D 포인트 클라우드 재구축 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 26권 / 3호 / 408 ~ 415페이지
    · 저자명 : 김정윤, 이승호

    초록

    본 논문에서는 효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법을 제안한다. 본 논문에서제안한 기법의 독창성은 다음과 같다. 첫 번째로, 메모리 측면에서 기존 기법보다 약 27% 더 효율적인 새로운 feature map 추출 네트워크를 사용한다. 제안하는 네트워크는 딥러닝 네트워크의 중간까지 크기 축소를 수행하지 않아, 3D 포인트 클라우드 재구축에 필요한 중요한 정보가 유실되지 않았다. 축소되지 않은 이미지 크기로 인해 발생하는 메모리 증가 문제는 채널의 개수를 줄이고 딥러닝 네트워크의 깊이를 얕게 효율적으로 구성하여 해결하였다. 두 번째로, 2D 이미지의 고해상도 feature를 보존하여 정확도를 기존 기법보다 향상시킬 수 있도록 하였다. 축소되지 않은이미지로부터 추출한 feature map은 기존의 방법보다 자세한 정보가 담겨있어 3D 포인트 클라우드의 재구축 정확도를 향상시킬 수 있다. 세 번째로, 촬영 정보를 필요로 하지 않는 divergence loss를 사용한다. 2D 이미지뿐만 아니라 촬영 각도가 학습에 필요하다는 사항은 그만큼 데이터셋이 자세한 정보를 담고 있어야 하며 데이터셋의 구축을 어렵게 만드는 단점이다. 본 논문에서는 추가적인 촬영 정보 없이 무작위성을 통해 정보의 다양성을 늘려 3D 포인트 클라우드의 재구축 정확도가 높아질 수 있도록 하였다. 제안하는 기법의 성능을 객관적으로 평가하기 위해ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 CD 값이 5.87, EMD 값이 5.81 FLOPs값이 2.9G로 산출되었다. 한편, CD, EMD 수치가 낮을수록, 재구축한 3D 포인트 클라우드가 원본에 근접하는 정확도가 향상된 결과를 나타낸다.
    또한, FLOPs 수치가 낮을수록 딥러닝 네트워크에 필요한 메모리가 적게 소요되는 결과를 나타낸다. 따라서, 제안하는 기법의 CD, EMD, FLOPs성능평가 결과가 다른 논문의 기법들보다 메모리 측면에서 약 27%, 정확도 측면에서 약 6.3% 향상된 결과를 나타내어 객관적인 성능이 입증되었다.

    영어초록

    In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extractionnetwork. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction networkthat is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to themiddle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solvedthe memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficientlyconfiguring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, theaccuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reducedimage contains more detailed information than the existing method, which can further improve the reconstruction accuracy ofthe 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2Dimage but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantagethat makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can beincreased by increasing the diversity of information through randomness without additional shooting information. In order toobjectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in thecomparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs valueis 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deeplearning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objectiveperformance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:29 오후