• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

국소가중다항회귀분석을 이용한 이상치제거 및 자료보정기법 개발 (GPS를 이용한 개별차량 주행속도를 중심으로) (Correction of Erroneous Individual Vehicle Speed Data Using Locally Weighted Regression (LWR))

10 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2009.04
10P 미리보기
국소가중다항회귀분석을 이용한 이상치제거 및 자료보정기법 개발 (GPS를 이용한 개별차량 주행속도를 중심으로)
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 실용성
    • 신뢰성
    • 유사도 지수
      참고용 안전
    • 🚗 교통 데이터 이상치 처리에 대한 실무적 접근법 제공
    • 📊 GPS 기반 차량 속도 분석의 전문적인 방법론 소개
    • 🔬 국소가중다항회귀분석(LWR)의 구체적인 적용 사례 설명

    미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 27권 / 2호 / 47 ~ 56페이지
    · 저자명 : 임희섭, 오철, 박준형, 이건우

    초록

    현장에서 수집되는 교통원시자료는 수집장비의 결함 및 주변환경 등에 의해 다양한 이상치가 발생한다. 원시자료의 품질은 추가 가공을 통해 생성되는 교통정보의 신뢰도에 직접적인 영향을 미치는 중요한 요인이다. 실시간으로 수집되는 교통원시자료를 1차 가공하는데 있어서 핵심은 이상치(Outlier)를 검지하고 보정하는 것이라고 할 수 있다. 본 연구에서는 GPS장비를 이용해 얻은 개별차량의 주행속도에서 발생하는 이상치를 제거하고 보정하는 기법을 제안하였다. GPS는 광범위한 교통네트워크상의 차량추적에 용이하게 사용될 수 있는 장점이 있다. 수집된 개별차량의 주행속도에서 이상치를 검지하고 보정하기 위해 국소가중다항회귀분석(LWR: Locally Weighted Regression)을 적용하였다. 또한 국소가중다항회귀분석을 수행하기 위한 파라미터 결정 알고리즘을 개발하여 적용하였다. 개발된 필터링 기법의 성능 평가를 위해 Synthetic Outlier를 생성 및 주입하여 개발된 필터링 기법을 통해 보정시키고 원시자료와 비교 분석 하였고, LWR을 이용한 기법의 상대적 성능 평가를 위해 지수평활화를 이용한 기법과 비교하였다. 평가 결과 LWR기법이 지수평활화를 이용한 기법보다 낮은 오차율을 보여 상대적으로 우수함을 검증하였다. 본 연구에서 제안한 방법론은 교통정보공학 분야의 자료처리 및 정보가공을 위한 도구로서 활용도가 클 것으로 기대된다.

    영어초록

    Effective detection and correction of outliers of raw traffic data collected from the field is of keen interest because reliable traffic information is highly dependent on the quality of raw data. Global positioning system (GPS) based traffic surveillance systems are capable of producing individual vehicle speeds that are invaluable for various traffic management and information strategies. This study proposed a locally weighted regression (LWR) based filtering method for individual vehicle speed data. An important feature of this study was to propose a technique to generate synthetic outliers for more systematic evaluation of the proposed method. It was identified by performance evaluations that the proposed LWR-based method outperformed an exponential smoothing. The proposed method is expected to be effectively utilized for filtering out raw individual vehicle speed data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한교통학회지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:11 오후