• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반 LSTM 모형을 이용한 저수지 수위자료 이상치 탐지 (Anomaly Detection in Reservoir Water Level Data Using the LSTM Model Based on Deep Learning)

11 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2021.02
11P 미리보기
딥러닝 기반 LSTM 모형을 이용한 저수지 수위자료 이상치 탐지
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🌊 농업용 저수지 수위 데이터 분석의 최신 딥러닝 접근법 제시
    • 📊 기후변화에 따른 농업용수 관리의 과학적 대응 방안 제시
    • 🤖 LSTM 모델을 활용한 혁신적인 수문 데이터 이상치 탐지 방법론

    미리보기

    서지정보

    · 발행기관 : 한국방재학회
    · 수록지 정보 : 한국방재학회논문집 / 21권 / 1호 / 71 ~ 81페이지
    · 저자명 : 양미혜, 남원호, 김한중, 김태곤, 신안국, 강문성

    초록

    최근 국지성 가뭄 발생 및 집중 호우, 평년 대비 강수량이 30% 이상 감소하는 등 기상 및 수문 현상이 변화하고 있다. 논벼 작물재배를 위한 용수를 공급하는 농업용 저수지의 경우 이상기후 발생으로 2013년부터 2017년까지 저수율이 0%에 도달한 저수지가 99개에 이르러 농업용수의 안정적 확보가 불확실해지고 있다. 농업환경의 변화와 기후변화에 대응하기 위해 농업용수 관리 정보화 및 과학화의 필요성이 증대되고 있으며, 실시간으로 저수지 저수량과 농업용수 공급량을 파악하기 위해 자동 수위계측시설이 도입되었다. 농림축산식품부의 저수지 자동수위측정기 설치 및 운영지침에 따라 현재 농어촌공사 관리 저수지 1,734개소 및 수로부 1,880개소에 자동수위계가 설치되어 있으며, 저수지와 수로에서 10분 간격으로 수위자료가 생성되고 있다. 농업용 저수지 수문자료의 공인지점은 2016년 6개소에서 2019년 49개소로 증가하고 있으며, 데이터 품질 저하의 최소화 및 신뢰성 있는 수문자료 생성의 필요성이 증가함에 따라 농업용 저수지의 특성을 반영한 저수지 수위 오결측 데이터 보정 방안 및 수문 자료 품질관리 방안이 요구된다. 최근 인공신경망(Artificial Neural Network, ANN) 등의 모형을 이용하여 비선형적인 수문해석이 가능해짐에 따라 농업용 저수지의 수위 변화 및 강우-유출 현상을 기상, 지형 등 영향 인자와 수위(또는 유출)와의 상관관계로부터 해석이 가능하다. 본 연구에서는 농업용수의 정량적 정보 관리를 위하여 시계열 자료의 학습에 효과적인 모형으로 다른 신경망과의 결합 등 다양한 분야에서 이용되고 있는 딥러닝(Deep Learning) 모형 중 하나인 LSTM (Long Short-Term Memory) 모형을 이용하여, 저수지 수위 자료의 오∙결측 자료에 대한 이상 탐지 알고리즘을 제시하고자 한다.

    영어초록

    Weather and hydrological phenomena have been changing due to climate change as evidenced by localized torrential rainfall and precipitation falling by more than 30% compared to the annual average. From 2013 to 2017 the ninety-nine reservoirs reached a water storage rate of 0%, making a secure stable water supply for agriculture uncertain. There is an increased need for information regarding agricultural water management to respond to the changes in the agricultural environment and climate. Therefore, automatic water level measurement facilities have been introduced to determine the real-time reservoir storage capacity and agricultural water supply. According to the Ministry of Agriculture, Food and Rural Affairs' guidelines for the installation and operation of water level measurement instruments, automatic water level facilities are currently installed at 1,734 reservoirs and 1,880 irrigation canals, with water level data generated at 10-minute intervals. The official recognition of hydrological water level data for agricultural reservoirs increased from six in 2016 to forty-nine in 2019. Anomaly detection algorithm methods for data regarding the agricultural reservoir level as well as quality control measures based on agricultural reservoir characteristics are required to minimize data quality degradation and generate reliable hydrological data over time. Though it was practically impossible to analyze the correlation between the water level or run-off and influential factors such as weather and terrain, recently a non-linear hydrological analysis has been possible using models such as Artificial Neural Networks (ANNs). This study aims to present an anomaly detection algorithm for reservoir level data using deep learning based LSTM (Long Short-Term Memory) models, in combination with other neural networks for managing quantitative information of agricultural water supply.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방재학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:10 오전