• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법 (A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies)

14 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2021.03
14P 미리보기
주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 실용성
    • 논리성
    • 유사도 지수
      참고용 안전
    • 🏭 주문생산 기업의 총생산시간 예측 문제를 기계학습으로 해결하는 혁신적인 접근법 제시
    • 📊 다양한 기계학습 알고리즘(OLS, GLM Gamma, Extra Trees, Random Forest)을 비교 분석
    • 💡 기업 리스크 감소와 생산성 향상을 위한 실무적인 솔루션 제공

    미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 27권 / 1호 / 177 ~ 190페이지
    · 저자명 : 박도명, 최형림, 박병권

    초록

    4차 산업혁명 기술의 발전으로 사람이 처리하지 못하는 부분을 기계학습 등 인공지능 기법을 활용하여 개선해 보려는 노력이 확대되고 있다. 주문형 생산 기업에서도 주문에 대한 총생산시간을 예측하여 납기 지연 등의 기업 리스크를 줄이고자 하나 주문마다 총생산시간이 모두 달라 이를 예측하는데, 어려움을 겪고 있다. 주문 처리량 증대, 주문 총비용 절감을 위해 효율성이 가장 낮은 영역을 찾아 그 영역을 강화하는 TOC(Theory of constraints) 이론이 개발되었으나 총생산시 간 예측은 제시하지 못하였다. 주문생산은 고객의 다양한 요구로 인해 주문마다 그 특성이 모두 다르므로 개별적인 주문의 총 생산시간을 사후에 측정할 수는 있으나 사전 예측을 하기는 어렵다. 기존 주문의 이미 측정된 총생산시간도 모두 달라 표준시간으로 활용할 수 없는 한계성이 있다. 이에 따라 경험이 많은 관리자는 시스템의 이용 보다는 감에 의존하고 있고, 경험이 부족한 관리자는 간단한 관리지표(예, 원재료가 파이프이면 총생산시간 60일, 철판이면 총생산시간 90일 등) 를 사용하고 있다. 불완전한 감이나 지표를 기초로 하여 작업 지시를 너무 빨리하면 정체가 발생하여 생산성이 저하되고, 너무 늦게 하면 긴급 처리로 인해 생산비용이 증가하거나 납기를 지키지 못하는 경우가 발생한다. 납기를 지키지 못하면 지체상금을 배상해야 하거나 영업, 수금 등의 부문에 악영향을 미친다. 본 연구에서는 이러한 문제를 해결하기 위하여 주문생산시스템을 운영하는 기업의 신규 주문 총생산시간을 추정하는 기계학습 모델을 찾고자 한다. 기계학습에 활용된 자료는 수주, 생산, 공정 실적을 사용한다. 그리고 총생산시간의 추정에 가장 적합한 알고리즘으로 OLS, GLM Gamma, Extra Trees, Random Forest 알고리즘 등을 비교 분석하고 그 결과를 제시하고자 한다.

    영어초록

    Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:06 오후