PARTNER
검증된 파트너 제휴사 자료

국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거 (A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence)

15 페이지
기타파일
최초등록일 2025.07.06 최종저작일 2021.12
15P 미리보기
국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거
  • 미리보기

    서지정보

    · 발행기관 : 한국지식경영학회
    · 수록지 정보 : 지식경영연구 / 22권 / 4호 / 71 ~ 85페이지
    · 저자명 : 임현욱, 정승환, 이희수, 오경주

    초록

    본 연구는 채권시장과 금리시장의 지표를 이용한 외환시장 환율예측 모델을 만드는데 있어 어떤 인공지능 방법론이가장 적합한지 밝혀내는데 그 목적이 있다. 채권시장의 대표 상품인 국고채와 통안채는 위험회피 상황이 올 때 대규모로매도되어지고 그런 경우 환율이 상승하는 모습을 자주 보여주었고, 금리시장에서 통화 스왑 (Cross Currency Swap) 가격은 달러 유동성 문제가 생길 때 주로 하락하였으며, 그 움직임은 환율의 상승에 직간접적인 영향을 미쳐온 점 등을 고려하면, 채권시장과 금리시장에서 거래되는 상품의 가격과 움직임은 외환시장에도 직간접적인 영향을 주고 있으며, 세 시장 사이엔 상호 유기적이고 보완적인 관계가 있다고 볼 수 있다. 지금까지 채권시장, 금리시장, 그리고 외환시장 사이의관계와 연관성을 밝히는 연구는 있어왔으나, 과거 많은 환율예측 연구들이 주로 GDP, 경상수지 흑자/적자, 인플레이션등 거시적인 지표를 기반으로 한 연구에 집중되어 왔으며, 채권시장과 금리시장 지표를 기반으로 인공지능을 활용하여외환시장의 환율을 예측하는 적극적인 연구는 아직 진행되지 않았다. 본 연구는 채권시장 지표와 금리시장 지표를 기반으로, 비선형데이터 분석에 적합한 인공신경망(Artificial Neural Network) 모델과, 선형데이터 분석에 적합한 로지스틱 회귀분석 (Logistic regression), 그리고 비선형/선형데이터 분석에 활용 가능한 의사결정나무 (Decision Tree)를 각각 사용하여 환율예측 모델을 만들고 그 수익률을 비교하여 어떤 모델이 가장 외환시장 환율 예측을 하는데 적합한지 알려준다. 또한, 본 연구는 주식시장, 금리시장, 오일시장, 그리고 외환시장 환율 등 비선형적 시계열 데이터 분석에 많이 사용되어진 인공신경망 모델이 채권시장과 금리시장 지표를 기반으로 한 외환시장 환율예측 모델에 가장 적합한 방법론을 제공하고 있다는 것을 증명한다. 채권시장, 금리시장, 그리고 외환시장 간의 단순한 연관성을 밝히는 것을 넘어, 세 시장 간의 거래 신호를 포착하여 적극적인 상관관계를 밝히고 상호 유기적인 움직임을 증명하는 것은 단순히 외환시장 트레이더 들에게 새로운 트레이딩 모델을 제시하는 것뿐만 아니라 금융시장 전체의 효율성을 증가시키는데 기여할 것이라 기대한다.

    영어초록

    The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지식경영연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:08 오후