PARTNER
검증된 파트너 제휴사 자료

데이터 분포와 연판정을 이용한 MCT-Adaboost 커널 분류기 (Kernel Classification Using Data Distribution and Soft Decision MCT-Adaboost)

6 페이지
기타파일
최초등록일 2025.06.27 최종저작일 2017.03
6P 미리보기
데이터 분포와 연판정을 이용한 MCT-Adaboost 커널 분류기
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 6권 / 3호 / 149 ~ 154페이지
    · 저자명 : 김기상, 최형일

    초록

    MCT-Adaboost 학습 알고리즘은 각 학습 단계에서 배경과 객체를 구분하는 가장 좋은 특징을 찾는 학습 알고리즘이다. 각 학습 단계에서는 최적의 특징을 검출하기 위해 학습 데이터에서 각 특징의 각 커널에서 모든 오차율을 산정하고, 각 특징에서 모든 커널들의 합을 하였을 경우 최소 오차율을 가지는 특징을 선택하도록 되어 있다. 이를 선택하고 다음 학습때 영향을 주는 약분류기에서 기존의 MCT-Adaboost 방법은 경판정 방법으로 사용하였다. 이 방법은 특정 커널에서 객체 데이터와 배경 데이터의 오류율이 유사할 경우, 한쪽으로 판정하기 때문에, 제대로 된 결과값을 산정할 수 없는 문제가 있다. 이를 유연하게 하기 위해 본 연구에서는 연판정을 이용한 약분류기 방법을 제안한다. 기존의 MCT-Adaboost는 초기 가중치를 동일하게 산정한다. 하지만, 이는 데이터의 특성을 모른다는 가정하에 설계된 초기 가중치 설정이다. 본 논문에서는 데이터 분포를 이용하여 가중치를 확률적으로 다르게 할당함으로서, 적은 학습에도 좋은 결과를 보이는 방법을 제안한다. 실험 결과에는 기존의 MCT-Adaboost가 제안하는 성능평가를 통해, 본 연구가 제안하는 방법이 기존 방법에 비해 좋은 결과를 보였다.

    영어초록

    The MCT-Adaboost algorithm chooses an optimal set of features in each rounds. On each round, it chooses the best feature by calculate minimizing error rate using feature index and MCT kernel distribution. The involved process of weak classification executed by a hard decision. This decision occurs some problems when it chooses ambiguous kernel feature. In this paper, we propose the modified MCT-Adaboost classification using soft decision. The typical MCT-Adaboost assigns a same initial weights to each datum. This is because, they assume that all information of database is blind. We assign different initial weights with our propose new algorithm using some statistical properties of involved features. In experimental results, we confirm that our method shows better performance than the traditional one.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:20 오후