• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

얼굴 특징점을 활용한 영상 편집점 탐지 (Detection of video editing points using facial keypoints)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
16 페이지
기타파일
최초등록일 2025.06.27 최종저작일 2023.12
16P 미리보기
얼굴 특징점을 활용한 영상 편집점 탐지
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 29권 / 4호 / 15 ~ 30페이지
    · 저자명 : 나요셉, 김진호, 박종혁

    초록

    최근 미디어 분야에도 인공지능(AI)을 적용한 다양한 서비스가 등장하고 있는 추세이다. 하지만 편집점을 찾아 영상을 이어 붙이는 영상 편집은, 대부분 수동적 방식으로 진행되어 시간과 인적 자원의 소요가 많이 발생하고 있다. 이에 본 연구 에서는 Video Swin Transformer를 활용하여, 발화 여부에 따른 영상의 편집점을 탐지할 수 있는 방법론을 제안한다. 이를 위해, 제안 구조는 먼저 Face Alignment를 통해 얼굴 특징점을 검출한다. 이와 같은 과정을 통해 입력 영상 데이터로부터 발화 여부에 따른 얼굴의 시・공간적인 변화를 모델에 반영한다. 그리고, 본 연구에서 제안하는 Video Swin Transformer 기반 모델을 통해 영상 속 사람의 행동을 분류한다. 구체적으로 비디오 데이터로부터 Video Swin Transformer를 통해 생성되는 Feature Map과 Face Alignment를 통해 검출된 얼굴 특징점을 합친 후 Convolution을 거쳐 발화 여부를 탐지하게 된다. 실험 결과, 본 논문에서 제안한 얼굴 특징점을 활용한 영상 편집점 탐지 모델을 사용했을 경우 분류 성능을 89.17% 기록하여, 얼굴 특징점을 사용하지 않았을 때의 성능 87.46% 대비 성능을 향상시키는 것을 확인할 수 있었다.

    영어초록

    Recently, various services using artificial intelligence(AI) are emerging in the media field as well However, most of the video editing, which involves finding an editing point and attaching the video, is carried out in a passive manner, requiring a lot of time and human resources. Therefore, this study proposes a methodology that can detect the edit points of video according to whether person in video are spoken by using Video Swin Transformer. First, facial keypoints are detected through face alignment. To this end, the proposed structure first detects facial keypoints through face alignment. Through this process, the temporal and spatial changes of the face are reflected from the input video data. And, through the Video Swin Transformer-based model proposed in this study, the behavior of the person in the video is classified. Specifically, after combining the feature map generated through Video Swin Transformer from video data and the facial keypoints detected through Face Alignment, utterance is classified through convolution layers. In conclusion, the performance of the image editing point detection model using facial keypoints proposed in this paper improved from 87.46% to 89.17% compared to the model without facial keypoints.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:22 오후