• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

협업 필터링 성능향상을 위한 데이터 필터링 및 재분배 방법 (Data Filtering and Redistribution for Improving Performance of Collaborative Filtering)

10 페이지
기타파일
최초등록일 2025.06.24 최종저작일 2021.08
10P 미리보기
협업 필터링 성능향상을 위한 데이터 필터링 및 재분배 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국차세대컴퓨팅학회
    · 수록지 정보 : 한국차세대컴퓨팅학회 논문지 / 17권 / 4호 / 13 ~ 22페이지
    · 저자명 : 서정한, 박진호

    초록

    협업 필터링은 사용자의 기록을 바탕으로 선호도를 예측하여 추천하는 방법이다. 최근 협업 필터링 중 머신러닝 알고리즘을 이용하는 연구가 활발히 이루어지고 있으며 그중에서 오토인코더 모델들의 추천 성능이 뛰어났다. 오토인코더 모델들은 추천 성능 향상을 위해 별도의 데이터 셋 전처리 과정을 거친다. 하지만 현재 모델들이 사용하는 기존의 전처리에서는 차원 축소 및 복원으로 인한 정보손실 문제와 데이터 셋들의 불균일한 분포 문제를 해결하지 못한다. 따라서 본 연구에서는 사용자 기반의 오토인코더 모델에 적합한 전처리 시스템을 제안한다. 본 연구는 필터 모듈과 분배 모듈로 이루어져 있으며 기존의 전처리의 문제들을 순차적으로 개선한다. 필터 모듈에서는 정보손실 문제를 개선하고 분배 모듈에서는 데이터 셋들의 불균일한 분포 문제를 개선하였다. 그리고 각각의 모듈들을 기존의 전처리 방법과 비교하는 실험을 하여 개선된 결과를 확인하였다. 또한 제안한 방법을 적용한 데이터 셋으로 사용자 기반 오토인코더 모델을 학습시켰을 때 추천 성능이 올라가는 것을 실험을 통해 확인하였다.

    영어초록

    Collaborative filtering(CF) is a method of recommending possible preferences of a user based on existing records. Recently, CF research using machine learning algorithms has been actively conducted, among which Autoencoder models have outstanding recommendation performances. Autoencoder models go through preprocessing to improve recommendation performance. However, traditional preprocessing used by current models cannot solve information loss due to dimensional reduction and restoration as well as uneven distribution of datasets. Therefore, in this work, we propose a preprocessing system suitable for user-based Autoencoder models. This work consists of filter modules and distribution modules, which sequentially reduce the problems of traditional preprocessing. We minimized the information loss problems in filter modules and the uneven distribution of datasets in distribution modules. We then conducted experiments comparing each module to conventional preprocessing to confirm the improved results. We also proved that recommendation performance increase when we train a user-based Autoencoder model with datasets that applied the suggested method through an experiment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:10 오후