PARTNER
검증된 파트너 제휴사 자료

조명 변화에 안정적인 손 형태 인지 기술 (A Robust Hand Recognition Method to Variations in Lighting)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
12 페이지
기타파일
최초등록일 2025.05.27 최종저작일 2008.02
12P 미리보기
조명 변화에 안정적인 손 형태 인지 기술
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 15권 / 1호 / 25 ~ 36페이지
    · 저자명 : 최유주, 이제성, 유효선, 이정원, 조위덕

    초록

    본 논문은 조명의 변화가 심한 영상에서 손 형태를 안정적으로 인지하는 기법에 관한 것이다. 제안한 방법은 HSI 색상공간에서 색상(Hue) 및 색상 기울기(Hue-Gradient)를 기반으로 정의된 배경모델을 구축하고, 실시간으로 입력되는 영상과의 배경차분(background subtraction)기법을 이용하여 배경과 손을 구분한다. 추출된 손의 영역으로부터 18가지의 특징요소를 추출하고 이를 기반으로 다중클래스 SVM(Support Vector Machine) 학습 기법을 사용하여 손의 형태를 인지한다. 제안 기법은 색상 기울기를 배경 차분에 적용함으로써, 조명 환경이 배경 모델의 조명과 다르게 급격한 변화가 이루어졌을 때도 안정적으로 손의 윤곽정보를 추출할 수 있도록 하였다. 또한, 실시간 처리를 저해하는 복잡한 손의 특성정보 대신, OBB의 크기에 대하여 정규화된 두 개의 고유값과 객체 기반 바운딩 박스(OBB)를 구성하는 16개 세부 영역에서의 손 윤곽픽셀의 개수를 손의 특성정보로 사용하였다. 본 논문에서는 급격한 조명 변화 상황에서 기존 RGB 색상요소를 기반으로 하는 배경차분법과 색상을 기반으로 하는 배경차분법, 본 논문에서 제안하는 색상 기울기 기반 배경 차분법의 결과를 비교함으로써 제안 기법의 안정성을 입증하였다. 6명의 실험대상자의 1부터 9까지의 수지화 2700개의 영상으로부터 손 특성 정보를 추출하고 이에 대하여 훈련을 통한 학습 모델을 생성하였다. 학습모델을 기반으로 실험자 6인의 손 형태 1620개의 데이터에 대하여 인지 실험을 실시하여 92.6%에 이르는 손 형태 인식 성공률을 얻었다.

    영어초록

    In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:41 오후