• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

BiLSTM 모델과 형태소 자질을 이용한 서술어 인식 방법 (Predicate Recognition Method using BiLSTM Model and Morpheme Features)

6 페이지
기타파일
최초등록일 2025.05.26 최종저작일 2022.01
6P 미리보기
BiLSTM 모델과 형태소 자질을 이용한 서술어 인식 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 26권 / 1호 / 24 ~ 29페이지
    · 저자명 : 남충현, 장경식

    초록

    정보 추출 및 질의응답 시스템 등 다양한 자연어 처리 분야에서 사용되는 의미역 결정은 주어진 문장과 서술어에 대해 서술어와 연관성 있는 논항들의 관계를 파악하는 작업이다. 입력으로 사용되는 서술어는 형태소 분석과 같은 어휘적 분석 결과를 이용하여 추출하지만, 한국어 특성상 문장의 의미에 따라 다양한 패턴을 가질 수 있기 때문에 모든 언어학적 패턴을 만들 수 없다는 문제점이 있다. 본 논문에서는 사전에 언어학적 패턴을 정의하지 않고 신경망 모델과 사전 학습된 임베딩 모델 및 형태소 자질을 추가한 한국어 서술어를 인식하는 방법을 제안한다. 실험은 모델의 변경 가능한 파라미터에 대한 성능 비교, 임베딩 모델과 형태소 자질의 사용 유무에 따른 성능 비교를 하였으며, 그 결과 제안한 신경망 모델이 92.63%의 성능을 보였음을 확인하였다.

    영어초록

    Semantic role labeling task used in various natural language processing fields, such as information extraction and question answering systems, is the task of identifying the arugments for a given sentence and predicate. Predicate used as semantic role labeling input are extracted using lexical analysis results such as POS-tagging, but the problem is that predicate can’t extract all linguistic patterns because predicate in korean language has various patterns, depending on the meaning of sentence. In this paper, we propose a korean predicate recognition method using neural network model with pre-trained embedding models and lexical features. The experiments compare the performance on the hyper parameters of models and with or without the use of embedding models and lexical features. As a result, we confirm that the performance of the proposed neural network model was 92.63%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 29일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:21 오전