• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

안드로이드 기반의 도로 밝기 측정 어플리케이션 구현 (A Road Luminance Measurement Application based on Android)

7 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2015.04
7P 미리보기
안드로이드 기반의 도로 밝기 측정 어플리케이션 구현
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 16권 / 2호 / 49 ~ 55페이지
    · 저자명 : 최영환, 김홍래, 홍민

    초록

    최근 5년간의 주·야간별 교통사고 통계에 따르면 대부분의 자동차 교통사고는 주간보다 야간에 더 많이 발생했다. 교통사고는 다양한 원인으로 발생하게 되는데 그 중 중요한 요소는 조명 미설치 또는 조명 위치의 부적합으로 운전자의 시야 혼란을 야기하여 교통사고를 유발하게 된다. 본 논문은 부적절한 도로 조명 시설 위치와 미설치 구역을 파악하고 관련 정보들을 데이터베이스화 하였다. 이를 위해 운전자의 위치 정보, 주행 정보, 도로 밝기 정보를 스마트폰을 이용하여 실시간으로 데이터베이스 서버에 저장하는 도로 밝기 측정 어플리케이션을 설계 및 구현하였다. 본 어플리케이션은 안드로이드 NDK을 이용하여 Native C/C++ 환경에서 구현되었으며, 이에 따라 자바나 다른 언어로 작성된 어플리케이션 보다 연산속도를 향상시켰다. 도로 밝기를 측정하기 위하여 카메라 영상인 RGB 색 공간의 영상을 YCbCr 색 공간의 영상으로 변환하여 휘도를 측정한다. 이를 위해 먼저 차선을 검출하고 도로 밝기 검출 영역의 휘도 값을 계산하여 데이터베이스에 저장한다. 또한 스마트폰의 카메라를 이용하여 실시간으로 도로의 영상을 입력 받고 도로의 차선부분에 대한 관심영역을 지정하여 연산 속도를 향상시켰다. 관심영역의 영상은 Grayscale 영상으로 변환하고 Canny 에지 검출기를 사용하여 외곽선을 추출하고 Hough line transform을 적용하여 차선의 후보군을 선별한다. 선별된 후보 차선의 기울기를 계산하여 양쪽의 차선을 선정한다. 양쪽 차선이 검출되면 차선의 교차점으로부터 아래로 20픽셀의 높이를 가진 삼각형을 도로 밝기 측정 범위로 설정한다. 삼각형 부분의 모든 픽셀에 대한 R, G, B값을 추출하여 Y값을 계산하고 픽셀 밝기 값의 평균을 0부터 100사이의 값으로 계산하여 검은색부터 초록색으로 도로의 밝기를 표현하였다. 계산된 60m 전방의 도로 밝기 값은 스마트폰의 GPS 센서를 통해 측정된 운전자의 주행 정보와 위치 정보를 획득하여 10분 간격으로 무선통신을 통해 데이터베이스 서버에 저장하였다. 향후 수집된 도로 밝기 정보들은 스마트폰 어플리케이션이나 차량 내비게이션을 통해 운전자들에게 조심 운전을 경고하거나 효율적인 도로 조명 관리를 위한 개보수 계획에 반영될 수 있을 것으로 기대된다.

    영어초록

    According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver’s sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:22 오전