PARTNER
검증된 파트너 제휴사 자료

비정형 문서에서 감정과 상황 정보를 이용한 감성 예측 (Sentiment Prediction using Emotion and Context Information in Unstructured Documents)

7 페이지
기타파일
최초등록일 2025.05.16 최종저작일 2020.10
7P 미리보기
비정형 문서에서 감정과 상황 정보를 이용한 감성 예측
  • 미리보기

    서지정보

    · 발행기관 : 중소기업융합학회
    · 수록지 정보 : 융합정보논문지 / 10권 / 10호 / 40 ~ 46페이지
    · 저자명 : 김진수

    초록

    인터넷의 발전으로 사용자들은 자신의 경험이나 의견을 공유한다. 영화평과 같은 비정형 문서의 전체적인 감정이나 장르 등의 정보를 고려하지 않고 연관된 키워드를 사용하기 때문에 적절한 감정 상황에 따른 감성 정확도를 저해한다. 따라서 사용자들이 작성한 비정형 문서가 속한 장르나 전반적인 감정 등의 정보를 기반으로 감성을 예측하는 시스템을 제안한다. 먼저, 비정형 문서로부터 기쁨, 화남, 공포, 슬픔 등의 감정 집합과 연관된 대표 키워드를 추출하고, 감정 특징단어들의 정규화된 가중치와 비정형 문서의 정보를 훈련 집합으로 CNN과 LSTM을 조합한 시스템에 훈련한다. 최종적으로 영화 정보와 형태소 분석기와 n-gram을 통해 추출한 정제된 단어들과 이모티콘, 이모지 등을 테스트함으로써 감정을 이용한 감성 예측 정확도와 F-measure 측면에서 향상됨을 보였다. 제안한 예측시스템은 슬픈 영화에서 슬픈 단어의 사용과 공포 영화에서 무서운 단어 등의 사용으로 인해 부정으로 판단하는 오류를 피함으로써, 감성을 상황에 따라 적절하게 예측할 수 있다.

    영어초록

    With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“융합정보논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:32 오전