• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Convolutional neural network 기법을 이용한 턱수염물범 신호 판별 (Classification of bearded seals signal based on convolutional neural network)

7 페이지
기타파일
최초등록일 2025.05.09 최종저작일 2022.03
7P 미리보기
Convolutional neural network 기법을 이용한 턱수염물범 신호 판별
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 41권 / 2호 / 235 ~ 241페이지
    · 저자명 : 김지섭, 윤영글, 한동균, 나형술, 최지웅

    초록

    수동 음향 관측을 통해 수집된 방대한 양의 데이터에서 해양포유류의 소리를 탐지하고 식별하기 위해 합성곱신경망(Convolutional Neural Network, CNN)을 활용한 연구가 많이 수행되고 있다. 본 연구는 2017년 8월부터2018년 8월까지 동시베리아 해에서 수집된 수중음향 스펙트럼 이미지를 기반으로 CNN을 활용하여 턱수염물범 소리의 분류 자동화 가능성을 확인해 보았다. 학습 데이터로서 다른 소음이 거의 포함되지 않은 뚜렷한 턱수염물범 소리를사용하였을 때, 암기로 인한 과적합이 발생하였다. 일부 데이터를 소음이 포함된 데이터로 교체하여 학습시켜 수집된전체 데이터로 평가한 결과 정확도(0.9743), 정밀도(0.9783), 재현율(0.9520)으로 모델이 이전보다 일반화되어 과적합이 방지되는 것을 확인하였다. 본 연구를 통해 물범신호 분류는 학습 데이터에 소음이 포함되었을 때 성능이 증가하는 것으로 나타났다.

    영어초록

    Several studies using Convolutional Neural Network (CNN) have been conducted to detect and classify the sounds of marine mammals in underwater acoustic data collected through passive acoustic monitoring. In this study, the possibility of automatic classification of bearded seal sounds was confirmed using a CNN model based on the underwater acoustic spectrogram images collected from August 2017 to August 2018 in East Siberian Sea. When only the clear seal sound was used as training dataset, overfitting due to memorization was occurred. By evaluating the entire training data by replacing some training data with data containing noise, it was confirmed that overfitting was prevented as the model was generalized more than before with accuracy (0.9743), precision (0.9783), recall (0.9520). As a result, the performance of the classification model for bearded seals signal has improved when the noise was included in the training data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:37 오후