PARTNER
검증된 파트너 제휴사 자료

결정경계 수직벡터의 해석적 계산을 통한 신경망 결정경계 특징추출 알고리즘의 성능 개선 (Improving the Performance of Decision Boundary Feature Extraction for Neural Networks by Calculating Normal Vector of Decision Boundary Analytically)

9 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2002.07
9P 미리보기
결정경계 수직벡터의 해석적 계산을 통한 신경망 결정경계 특징추출 알고리즘의 성능 개선
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - CI / 39권 / 7호 / 44 ~ 52페이지
    · 저자명 : 고진욱, 이철희

    초록

    본 논문에서는 결정경계(decision boundary)를 이용한 신경망의 특징추출을 해석적으로 구현할 수 있는 방법을 제안한다. 최근 발표된 신경망의 결정경계 기반의 특징추출 방법은 기존의 특징추출 방법보다 우수한 성능을 보여 주었다. 이러한 결정경계 특징추출 방법은 패턴 분류기(pattern classifier)의 결정경계에 수직한 벡터가 패턴 클래스(class)간을 분류하는데 유용한 정보를 포함한다는 사실을 기반으로 원래의 데이터로부터 분류에 필요한 정보들만을 추출하게 된다. 그러나 기존의 결정경계 특징추출 알고리즘은 신경망 결정경계의 수직벡터를 구하기 위해 결정경계의 변화율(gradient) 근사 방법을 사용하였다. 그 결과 결정경계 수직벡터가 부정확하게 계산될 가능성이 있고 계산 시간이 길어지는 문제점이 존재한다. 본 논문에서는 이러한 문제점을 해결하기 위해 수직벡터를 하나의 방정식으로부터 해석적으로 계산하는 방법을 제안한다. 제안된 방법을 원격탐사 데이터의 패턴분류에 적용하여 그 성능을 확인한 결과 특징추출에 필요한 연산 시간을 대폭 줄일 수 있고 또한 더 향상된 특징추출 성능을 얻음을 확인하였다.

    영어초록

    In this paper, we present an analytical method for decision boundary feature extraction for neural networks. It has been shown that all the features necessary to achieve the same classification accuracy xxxas in the original space can be obtained from the vectors normal to decision boundaries. However, the vector normal to the decision boundary of a neural network has been calculated numerically using a gradient approximation. This process is time-consuming and the normal vector may be inaccurately estimated. In this paper, we propose a method to improve the performance of the previous decision boundary feature extraction for neural networks by accurately calculating the normal vector. When the normal vectors are computed analytically, it is possible to reduce the processing time significantly and improve the performance of the previous implementation that employs numerical approximation.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:27 오후