PARTNER
검증된 파트너 제휴사 자료

합성곱 신경망에서 이미지 분류를 위한 하이퍼파라미터 최적화 (Hyperparameter Optimization for Image Classification in Convolutional Neural Network)

6 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.09
6P 미리보기
합성곱 신경망에서 이미지 분류를 위한 하이퍼파라미터 최적화
  • 미리보기

    서지정보

    · 발행기관 : 한국융합신호처리학회
    · 수록지 정보 : 융합신호처리학회 논문지 / 21권 / 3호 / 148 ~ 153페이지
    · 저자명 : 이재은, 김영봉, 김종남

    초록

    합성곱 신경망 모형에서 높은 정확도를 얻기 위해서는 최적의 하이퍼파라미터를 설정하는 작업이 필요하다. 하지만 높은 성능을 낼 수 있는 하이퍼파라미터 값이 정확히 알려진 바가 없으며, 자료마다 최적의 하이퍼파라미터 값이 달라질 수 있기 때문에 매번 실험을 통해서 찾아야만 한다. 또한, 하이퍼파라미터 값들의 범위가 넓고 조합 수가 많기 때문에 시간과 계산량을 줄이기 위해서는 최적값을 찾기 위한 실험 계획을 먼저 한 후에 탐색을 하는 것이 필요하다. 그러나 아직까지 합성곱 신경망 모형에서 하이퍼파라미터 최적화를 위하여 실험계획법을 이용한 연구 결과가 보고되지 않았다. 본 논문에서는 이미지 분류 문제에서 통계방법 중 하나인 실험계획법의 요인배치법을 이용하여 실험 계획을 하고 합성곱 신경망 분석을 한 후에, 높은 성능을 갖는 값을 중심으로 그리드 탐색을 하여 최적의 하이퍼파라미터를 찾는 방법을 제안한다. 실험 계획을 통하여 각 하이퍼파라미터들의 탐색 범위를 줄인 후에 그리드 탐색을 함으로써 효율적으로 연산량을 줄이고 정확도를 높힐 수 있음을 보였다. 또한 실험 결과에서 모형 성능에 가장 큰 영향을 주는 하이퍼파라미터가 학습률이라는 것을 확인할 수 있었다.

    영어초록

    In order to obtain high accuracy with an convolutional neural network(CNN), it is necessary to set the optimal hyperparameters. However, the exact value of the hyperparameter that can make high performance is not known, and the optimal hyperparameter value is different based on the type of the dataset, therefore, it is necessary to find it through various experiments. In addition, since the range of hyperparameter values is wide and the number of combinations is large, it is necessary to find the optimal values of the hyperparameters after the experimental design in order to save time and computational costs. In this paper, we suggest an algorithm that use the design of experiments and grid search algorithm to determine the optimal hyperparameters for a classification problem. This algorithm determines the optima values of the hyperparameters that yields high performance using the factorial design of experiments. It is shown that the amount of computational time can be efficiently reduced and the accuracy can be improved by performing a grid search after reducing the search range of each hyperparameter through the experimental design. Moreover, Based on the experimental results, it was shown that the learning rate is the only hyperparameter that has the greatest effect on the performance of the model.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 28일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:40 오후