• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

신경망 및 비신경망 오토인코더 기반 추천 모델의 성능 비교 및 분석 (Performance Comparison and Analysis Between Neural and Non-neural Autoencoder-based Recommender Systems)

8 페이지
기타파일
최초등록일 2025.04.28 최종저작일 2020.11
8P 미리보기
신경망 및 비신경망 오토인코더 기반 추천 모델의 성능 비교 및 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 47권 / 11호 / 1078 ~ 1085페이지
    · 저자명 : 정윤기, 이종욱

    초록

    다양한 분야에 심층 신경망이 도입되어 획기적인 성능 개선을 보이고 있으나, 최근 심층 신경망 기반 추천 모델의 성능 개선이 크게 보이지 않는다는 주장이 나오고 있다. 이와 같은 문제는 추천 연구에 통용되는 실험 환경의 부재와 제안 모델 성능에 대한 엄밀한 분석 부재에 기인한다. 본 논문에서는 1) 추천 모델의 공정한 비교를 위한 실험 프로토콜을 구성하고, 2) 추천 모델의 한 축인 오토인코더 기반 추천 모델에 대해서 실험적 검증을 수행하며, 3) 사용자와 항목 인기도를 기준으로 여러 개의 세부 그룹으로 나누어 실험 결과를 분석한다. 실험 결과, 모든 데이터셋에서 신경망 기반 모델의 추천 성능이 비신경망 대비 일관적인 성능 개선을 보이지 않았으며, 신경망 모델 내에서도 주된 정확도 개선을 확인할 수 없었다. 한편, 세부 그룹별 성능 평가 결과에서는 인기 항목에선 비신경망 모델의, 비인기 항목에선 신경망 모델의 정확도가 높음이 확인하였고, 이를 통해 신경망 모델의 복잡성이 비인기 항목에 대한 추천에 도움이 될 수 있다고 판단된다.

    영어초록

    While deep neural networks have been bringing advances in many domains, recent studies have shown that the performance gain from deep neural networks is not as extensive as reported, compared to the higher computational complexity they require. This phenomenon is caused by the lack of shared experimental settings and strict analysis of proposed methods. In this paper, 1) we build experimental settings for fair comparison between the different recommenders, 2) provide empirical studies on the performance of the autoencoder-based recommender, which is one of the main families in the literature, and 3) analyze the performance of a model according to user and item popularity. With extensive experiments, we found that there was no consistent improvement between the neural and the non-neural models in every dataset and there is no evidence that the non-neural models have been improving over time. Also, the non-neural models achieved better performance on popular item accuracy, while the neural models relatively perform better on less popular items.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:11 오전