• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

유역정보 기반 Transformer및 LSTM을 활용한 다목적댐 일 단위 유입량 예측 (Prediction of multipurpose dam inflow utilizing catchment attributes with LSTM and transformer models)

13 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2024.07
13P 미리보기
유역정보 기반 Transformer및 LSTM을 활용한 다목적댐 일 단위 유입량 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 57권 / 7호 / 437 ~ 449페이지
    · 저자명 : 김형주, 송영훈, 정은성

    초록

    딥러닝을 활용하여 유역 특성을 반영한 유량 예측 및 비교 연구가 주목받고 있다. 본 연구는 셀프 어텐션 메커니즘을 통해 대용량 데이터 훈련에 적합한 Transformer와 인코더-디코더(Encoder-Decoder) 구조를 가지는 LSTM-based multi-state-vector sequence-to-sequence (LSTM- MSV-S2S) 모형을 선정하여 유역정보(catchment attributes)를 고려할 수 있는 모형을 구축하였고 이를 토대로 국내 10개 다목적댐 유역의 유입량을 예측하였다. 본 연구에서 설계한 실험 구성은 단일유역-단일훈련(Single-basin Training, ST), 다수유역-단일훈련(Pretraining, PT), 사전학습-파인튜닝(Pretraining-Finetuning, PT-FT)의 세 가지 훈련 방법을 사용하였다. 모형의 입력 자료는 선정된 10가지 유역정보와 함께 기상 자료를 사용하였으며, 훈련 방법에 따른 유입량 예측 성능을 비교하였다. 그 결과, Transformer 모형은 PT와 PT-FT 방법에서 LSTM-MSV-S2S보다 우수한 성능을 보였으며, 특히 PT-FT 기법 적용 시 가장 높은 성능을 나타냈다. LSTM-MSV-S2S는 ST 방법에서는 Transformer보다 높은 성능을 보였으나, PT 및 PT-FT 방법에서는 낮은 성능을 보였다. 또한, 임베딩 레이어 활성화 값과 원본 유역정보를 군집화하여 모형의 유역 간 유사성 학습 여부를 분석하였다. Transformer는 활성화 벡터가 유사한 유역들에서 성능이 향상되었으며, 이는 사전에 학습된 다른 유역의 정보를 활용해 성능이 개선됨을 입증하였다. 본 연구는 다목적댐별 적합한 모형 및 훈련 방법을 비교하고, 국내 유역에 PT 및 PT-FT 방법을 적용한 딥러닝 모형 구축의 필요성을 제시하였다. 또한, PT 및 PT-FT 방법 적용 시 Transformer가 LSTM-MSV-S2S보다 성능이 더 우수하였다.

    영어초록

    Rainfall-runoff prediction studies using deep learning while considering catchment attributes have been gaining attention. In this study, we selected two models: the Transformer model, which is suitable for large-scale data training through the self-attention mechanism, and the LSTM-based multi-state-vector sequence-to-sequence (LSTM-MSV-S2S) model with an encoder-decoder structure. These models were constructed to incorporate catchment attributes and predict the inflow of 10 multi-purpose dam watersheds in South Korea. The experimental design consisted of three training methods: Single-basin Training (ST), Pretraining (PT), and Pretraining-Finetuning (PT-FT). The input data for the models included 10 selected watershed attributes along with meteorological data. The inflow prediction performance was compared based on the training methods. The results showed that the Transformer model outperformed the LSTM-MSV-S2S model when using the PT and PT-FT methods, with the PT-FT method yielding the highest performance. The LSTM-MSV-S2S model showed better performance than the Transformer when using the ST method; however, it showed lower performance when using the PT and PT-FT methods. Additionally, the embedding layer activation vectors and raw catchment attributes were used to cluster watersheds and analyze whether the models learned the similarities between them. The Transformer model demonstrated improved performance among watersheds with similar activation vectors, proving that utilizing information from other pre-trained watersheds enhances the prediction performance. This study compared the suitable models and training methods for each multi-purpose dam and highlighted the necessity of constructing deep learning models using PT and PT-FT methods for domestic watersheds. Furthermore, the results confirmed that the Transformer model outperforms the LSTM-MSV-S2S model when applying PT and PT-FT methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 09일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:50 오전