• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

개체 유형 정보를 활용한 지식 그래프 임베딩 (Knowledge Graph Embedding with Entity Type Constraints)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
7 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2022.09
7P 미리보기
개체 유형 정보를 활용한 지식 그래프 임베딩
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 49권 / 9호 / 773 ~ 779페이지
    · 저자명 : 공승환, 정찬영, 주수헌, 황지영

    초록

    지식 그래프 임베딩은 그래프의 구조적 특성을 반영하여 개체와 관계를 특성 공간에 나타내는 기술이다. 대부분의 지식 그래프 임베딩 모델은 그래프 구조 이외의 정보를 가정하지 않고 특징 벡터를 생성한다. 하지만 실생활과 밀접한 지식 그래프는 개체의 유형 정보 등 추가적인 정보를 얻을 수 있다. 본 논문에서는 개체의 유형이 클러스터의 역할을 수행할 수 있다는 점에 착안하여, 유형 정보를 반영할 수 있는 손실 함수를 통한 지식 그래프 임베딩 모델을 제시한다. 또한, 지식 그래프 내 관계의 주어/술어에 해당하는 유형이 제한적이라는 관찰을 토대로 개체 유형 제한에 특화된 네거티브 샘플링 기법을 제시한다. 본 논문에서 제시한 모델에 대한 링크 예측을 평가하기 위해 개체 유형 제한을 가진 지식 그래프인 SMC 데이터 셋을 생성하여 실험을 진행하였다. 링크 예측 결과는 본 모델이 네 개의 베이스라인 모델과 비교해서 뛰어난 성능을 보이는 것을 확인하였다.

    영어초록

    Knowledge graph embedding represents entities and relationships in the feature space by utilizing the structural properties of the graph. Most knowledge graph embedding models rely only on the structural information to generate embeddings. However, some real-world knowledge graphs include additional information such as entity types. In this paper, we propose a knowledge graph embedding model by designing a loss function that reflects not only the structure of a knowledge graph but also the entity-type information. In addition, from the observation that certain type constraints exist on triplets based on their relations, we present a negative sampling technique considering the type constraints. We create the SMC data set, a knowledge graph with entity-type restrictions to evaluate our model. Experimental results show that our model outperforms the other baseline models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 12일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:27 오후