• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

국지예보모델자료와 위성자료를 이용한 딥러닝 기반의농지 증발산량 산출 및 지도화 (Deep Learning-based Estimation and Mapping of Evapotranspiration in Cropland using Local Weather Prediction Model and Satellite Data)

12 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2018.12
12P 미리보기
국지예보모델자료와 위성자료를 이용한 딥러닝 기반의농지 증발산량 산출 및 지도화
  • 미리보기

    서지정보

    · 발행기관 : 한국지도학회
    · 수록지 정보 : 한국지도학회지 / 18권 / 3호 / 105 ~ 116페이지
    · 저자명 : 이수진, 김광진, 김영호, 김지원, 박성욱, 윤예슬, 김나리, 이양원

    초록

    증발산은 순복사 에너지를 사용하여 잠열의 형태로 수증기를 대기 중으로 수송함으로써 지구에너지 순환에 있어 중요한요소 중의 하나이며, 증발산량은 지표유출의 두 배 정도로서 지구 물 수지에서 차지하는 비중이 매우 크다. 증발산의 지상관측은지점에 국한되기 때문에 공간연속면 상에서의 증발산량 산출을 위하여 격자형 기상자료와 위성자료를 이용한 모델링이 오랫동안이루어져왔다. PM(Penman-Monteith) 방정식에 기초한 METRIC(Mapping Evapotranspiration with Internalized Calibration) 모델이나 PT(Priestley-Taylor) 방정식을 이용한 MS-PT(Modified Satellite-based Priestley-Taylor) 모델 등이 주로 사용되어왔으나, 또 하나의 대안으로서 본 연구에서는 최근 부각되고 있는 딥러닝 기법인 DNN(deep neural network)을 이용한 증발산모델링을 수행하였다. 은닉층 구조, 손실함수, 옵티마이저, 활성화함수, L1/L2 정규화, 드롭아웃 비율 등의 최적화 과정을 거쳐서수립한 DNN 모델은 RMSE = 0.326mm/day, 상관계수 = 0.975의 매우 양호한 정확도를 나타내었다. 이는 DNN 최적화와 함께, 국지예보모델과 위성자료로부터 증발산 기작에 관여하는 인자들을 선택하여 입력자료로 적절히 사용하였기 때문이기도 하다.
    향후과제로서 훈련자료의 종류와 양을 증가시켜서 DNN 모델을 보다 정교화하는 것은 반드시 필요하다고 사료된다.

    영어초록

    Evapotranspiration is an important factor for Earth energy balance which transports vapor into atmosphere in the form of latent heat using net radiation energy. Measuring the evapotranspiration is actually limited to a point, so the modeling on a spatially continuous grid has been conducted for a long time using meteorological and satellite data. In addition to the PM (Penman-Monteith) equation-based METRIC (Mapping Evapotranspiration with Internalized Calibration) model and the PT (Priestley-Taylor) equation-based MS-PT (Modified Satellite-based Priestley-Taylor) model, the DNN (deep neural network) as an emerging technique can be a viable option. We conducted a DNN modeling of evapotranspiration through optimization for hidden layer structure, loss function, optimizer, active function, L1/L2 regularization, and dropout ratio. The result showed a quite favorable accuracy with the RMSE of 0.326 mm/day and the correlation coefficient of 0.975. This is because we used optimal input variables associated with the mechanism of evapotranspiration from numerical weather prediction model and satellite data, in addition to the DNN optimization. However, a more delicate modeling by increasing the volume and kind of training dataset will be necessary for future work.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지도학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 18일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:22 오후