• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

자동화된 2차원 복부 CT 영상에서 딥러닝 기법을 이용한 근육 분할 기법 (Automated Muscle segmentation technique using deep learning technique in 2D abdominal CT images)

9 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2022.10
9P 미리보기
자동화된 2차원 복부 CT 영상에서 딥러닝 기법을 이용한 근육 분할 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국차세대컴퓨팅학회
    · 수록지 정보 : 한국차세대컴퓨팅학회 논문지 / 18권 / 5호 / 19 ~ 27페이지
    · 저자명 : 조다솜, 계희원, 정희렬, 박태용, 김경원, 이정진, 송현주

    초록

    본 논문에서는 복부 CT 영상에서 딥러닝을 이용한 정확하고 빠른 근육 분할 기법을 제안한다. 데이터 세트는 DICOM 태그의 리스케일 슬로프, 인터셉트 정보를 이용해 픽셀 값을 정규화하고 훈련 데이터 세트에는 유사 변환을 이용해 이미지 증강을 수행했다. 증강된 훈련 데이터 세트에 U-net을 이용해 근육 영역 분할 학습을 수행했다. U-net은 생물의학 이미지 분할을 위해 고안된 fully convolutional networks 기반 모델이다. 분할된 근육 영역에서 hounsfield unit 범위로 판별된 근육 외의 부분을 제거하여 근육 마스크를 생성한다. 제안된 모델의 정확도는 98%이고, 한 장의 복부 CT 영상에서 근육을 분할하는 데 평균 1초가 소요되었다.

    영어초록

    In this paper, we propose an accurate and fast fully automated muscle segmentation technique using deep learning in abdominal CT images. The dataset normalized pixel values using rescale slope, intercept information in the DICOM tag, and image augmentation was performed using similarity transformation in the training dataset. We performed muscle region segmentation learning using U-net on the augmented training dataset. U-net is a fully convolutional networks based model designed for biomedical image segmentation. A muscle mask is generated by removing a portion other than the muscle determined by the hounsfield unit range from the divided muscle region. The accuracy of the proposed model was 98% and it took an average of 1 second to segment the muscles in one abdominal CT image.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국차세대컴퓨팅학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:55 오전