• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 텍스트 요약 모델의 데이터 편향 문제 해결을 위한 학습 기법 (Training Techniques for Data Bias Problem on Deep Learning Text Summarization)

7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2022.07
7P 미리보기
딥러닝 텍스트 요약 모델의 데이터 편향 문제 해결을 위한 학습 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 26권 / 7호 / 949 ~ 955페이지
    · 저자명 : 조준희, 오하영

    초록

    일반적인 딥러닝 기반의 텍스트 요약 모델은 데이터셋으로부터 자유롭지 않다. 예를 들어 뉴스 데이터셋으로 학습한 요약 모델은 커뮤니티 글, 논문 등의 종류가 다른 글에서 핵심을 제대로 요약해내지 못한다. 본 연구는 이러한 현상을 '데이터 편향 문제'라 정의하고 이를 해결할 수 있는 두 가지 학습 기법을 제안한다. 첫 번째는 고유명사를 마스킹하는 ‘고유명사 마스킹’이고 두 번째는 텍스트의 길이를 임의로 늘이거나 줄이는 ‘길이 변화’이다. 또한, 실제 실험을 진행하여 제안 기법이 데이터 편향 문제 해결에 효과적임을 확인하며 향후 발전 방향을 제시한다. 본 연구의 기여는 다음과 같다. 1) 데이터 편향 문제를 정의하고 수치화했다. 2) 요약 데이터의 특징을 바탕으로 학습 기법을 제안하고 실제 실험을 진행했다. 3) 제안 기법은 모든 요약 모델에 적용할 수 있고 구현이 어렵지 않아 실용성이 뛰어나다.

    영어초록

    Deep learning-based text summarization models are not free from datasets. For example, a summarization model trained with a news summarization dataset is not good at summarizing other types of texts such as internet posts and papers. In this study, we define this phenomenon as Data Bias Problem (DBP) and propose two training methods for solving it. The first is the 'proper nouns masking' that masks proper nouns. The second is the ‘length variation’ that randomly inflates or deflates the length of text. As a result, experiments show that our methods are efficient for solving DBP. In addition, we analyze the results of the experiments and present future development directions. Our contributions are as follows: (1) We discovered DBP and defined it for the first time. (2) We proposed two efficient training methods and conducted actual experiments. (3) Our methods can be applied to all summarization models and are easy to implement, so highly practical.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 08일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:32 오전