• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반의 도시 지역 차량궤적 예측 알고리즘 개발 연구 (Deep-learning based Urban Vehicle Trajectory Prediction)

8 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2019.10
8P 미리보기
딥러닝 기반의 도시 지역 차량궤적 예측 알고리즘 개발 연구
  • 미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 37권 / 5호 / 422 ~ 429페이지
    · 저자명 : 최성진, 김지원, 유화평, 가동호, 여화수

    초록

    최근 다양한 위치추적센서를 통하여 수집된 데이터를 기반으로 교통 분야에서는 도시 도로망을 이용하는 개별 사용자의 고해상도 이동성 데이터가 생성 및 수집되고 있다. 해당 센서에서 생성 된 도시 지역 이동성 데이터는 교통 네트워크 이용자들의 이동 패턴에 대한 시공간적인 새로운 통찰력을 제공하며, 이는 도시 지역 교통 흐름을 예측하고 교통 효율을 향상시키는 모델 및 전략을 개발하는데 사용 될 수 있다. 따라서 이 연구는 도시 지역 이동성 패턴을 예측하고자 도시 지역 차량 궤적을 예측하는 알고리즘을 제안한다. 도시 지역을 구역으로 나누어 거시적 이동성 패턴을 분석한 선행 연구와는 달리, 본 연구에서는 교차로 단위의 차량 궤적 데이터를 생성하여 보다 미시적인 이동성 패턴을 분석하려고 한다, 본 연구에서는 딥러닝 기반의 모델을 사용하여 차량 궤적을 예측하였다. 한 차량이 앞서 진행한 교차로 시퀀스를 입력하여 다음에 이 차량이 진행할 교차로를 예측한다. 제안된 알고리즘은 브리즈번에서 1년간 수집된 블루투스 데이터를 이용하여 학습하고 시험한다. 시험 데이터 세트로 알고리즘의 성능을 평가한 결과 제안된 알고리즘이 평균 70% 이상의 예측 정확도를 보였다.

    영어초록

    Recently, as a variety of position sensors are developed, a large amount of urban position data is collected in the urban traffic networks. Based on the data collected through such location sensors, high-resolution urban mobility data of individual users using urban road networks is generated and collected in the transportation systems. Urban mobility data generated by these sensors provide a novel spatio-temporal insights into the mobility patterns of traffic network users and can be used to develop models and strategies to predict traffic flows in urban areas and improve traffic efficiency. This study proposes an algorithm for predicting urban mobility patterns. Deep learning based algorithm is used to train mobility patterns in urban areas and predict mobility. The proposed algorithm is trained and tested using Bluetooth data collected in Brisbane for one year. As a result of evaluating the performance of the algorithm with the test dataset, the proposed algorithm shows an average prediction accuracy of 70% or more.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:48 오전