• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥 러닝 기반 얼굴 메쉬 데이터 디노이징 시스템 (A Deep Learning-Based Face Mesh Data Denoising System)

7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2019.12
7P 미리보기
딥 러닝 기반 얼굴 메쉬 데이터 디노이징 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 23권 / 4호 / 1250 ~ 1256페이지
    · 저자명 : 노지현, 임현승, 김종민

    초록

    3차원 프린터나 깊이 카메라 등을 이용하면 실세계의 3차원 메쉬 데이터를 손쉽게 생성할 수 있지만, 이렇게 생성된 데이터에는 필연적으로 불필요한 노이즈가 포함되어 있다. 따라서, 온전한 3차원 메쉬 데이터를 얻기 위해서는 메쉬 디노이징 작업이 필수적이다. 하지만 기존의 수학적인 디노이징 방법들은 전처리 작업이 필요하며 3차원 메쉬의 일부 중요한 특징들이사라지는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 딥 러닝 기반의 3차원 메쉬 디노이징 기법을 소개한다.
    구체적으로 본 논문에서는 인코더와 디코더로 구성된 컨볼루션 기반 오토인코더 모델을 제안한다. 메쉬 데이터에 적용하는컨볼루션 연산은 메쉬 데이터를 구성하고 있는 각각의 정점과 그 주변의 정점들 간의 관계를 고려하여 디노이징을 수행하며,컨볼루션이 완료되면 학습 속도 향상을 위해 샘플링 연산을 수행한다. 실험 결과, 본 논문에서 제안한 오토인코더 모델이 기존 방식보다 더 빠르고 더 높은 품질의 디노이징된 데이터를 생성함을 확인하였다.

    영어초록

    Although one can easily generate real-world 3D mesh data using a 3D printer or a depth camera, the generated datainevitably includes unnecessary noise. Therefore, mesh denoising is essential to obtain intact 3D mesh data. However,conventional mathematical denoising methods require preprocessing and often eliminate some important features of the3D mesh. To address this problem, this paper proposes a deep learning based 3D mesh denoising method. Specifically,we propose a convolution-based autoencoder model consisting of an encoder and a decoder. The convolution operationapplied to the mesh data performs denoising considering the relationship between each vertex constituting the meshdata and the surrounding vertices. When the convolution is completed, a sampling operation is performed to improvethe learning speed. Experimental results show that the proposed autoencoder model produces faster and higher qualitydenoised data than the conventional methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 17일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:20 오후