• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산 (Deep-Learning Seismic Inversion using Laplace-domain wavefields)

10 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2023.05
10P 미리보기
라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산
  • 미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 26권 / 2호 / 84 ~ 93페이지
    · 저자명 : 조준현, 하완수

    초록

    지도 학습 기반 딥러닝 탄성파 역산은 소규모 영역을 대상으로 하는 합성 자료 예제에서 성공적인 역산 성능을 보여주었다. 지도 학습 기 반 딥러닝 탄성파 역산은 시간 영역 파동장을 입력, 지하 속도 모델을 출력으로 사용하는데, 시간 영역 파동장은 다양한 파동 정보를 포 함하고 있어 자료의 크기가 상당히 크다. 따라서 대량의 데이터로 훈련하는 지도 학습 기반 딥러닝 탄성파 역산을 현장 규모의 자료에 적 용하는 연구는 아직까지 수행되지 못하고 있다. 본 연구에서는 지도 학습 기반 딥러닝 탄성파 역산 기법을 현장 규모의 자료에 적용하기 위해 시간 영역 파동장 대신 라플라스 영역 파동장을 입력으로 사용하여 지하 속도 모델을 예측하였다. 시간 영역 파동장 대신 라플라스 영역 파동장을 사용하면 결과의 해상도는 다소 떨어지지만 입력 자료의 크기가 크게 감소하여 신경망 훈련이 빨라지게 된다. 또한, 큰 격 자 간격을 사용할 수 있어 현장 자료 크기의 속도 모델을 효율적으로 예측할 수 있으며 이를 통해 얻은 결과는 후속 역산의 초기 모델로 사용될 수 있다. 신경망 훈련을 위해 현장 자료 크기를 가지는 대량의 합성 속도 모델과 라플라스 영역 파동장을 생성한 후 인공 합성 자 료만으로 신경망을 훈련시켰다. 또한, 해양 탄성파 탐사를 시뮬레이션하기 위해 견인 스트리머 취득 조건을 채택하였다. 테스트 자료와 벤 치마크 모델을 이용한 수치 예제에서 훈련된 신경망을 테스트한 결과, 적절한 배경 속도 모델들을 얻을 수 있었다.

    영어초록

    The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지구물리와 물리탐사”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:41 오후