• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반 손상된 흑백 얼굴 사진 컬러 복원 (Deep Learning Based Color Restoration of Corrupted Black and White Facial Photos)

9 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2018.06
9P 미리보기
딥러닝 기반 손상된 흑백 얼굴 사진 컬러 복원
  • 미리보기

    서지정보

    · 발행기관 : (사)한국컴퓨터그래픽스학회
    · 수록지 정보 : 한국컴퓨터그래픽스학회논문지 / 24권 / 2호 / 1 ~ 9페이지
    · 저자명 : 신재우, 김종현, 이정, 송창근, 김선정

    초록

    본 논문에서는 손상된 흑백 얼굴 이미지를 컬러로 복원하는 방법을 제안한다. 기존 연구에서는 오래된 증명사진처럼 손상된 흑백 사진에 컬러화 작업을 하면 손상된 영역 주변이 잘못 색칠되는 경우가 있었다. 이와 같은 문제를 해결하기 위해 본 논문에서는 입력받은 사진의 손상된 영역을 먼저 복원한 후 그 결과를 바탕으로 컬러화를 수행하는 방법을 제안한다. 본 논문의 제안 방법은 BEGAN(Boundary Equilibrium Generative Adversarial Networks) 모델 기반 복원과 CNN(Convolutional Neural Network) 기반 컬러화의 두 단계로 구성된다. 제안하는 방법은 이미지 복원을 위해 DCGAN(Deep Convolutional Generative Adversarial Networks) 모델을 사용한 기존 방법들과 달리 좀 더 선명하고 고해상도의 이미지 복원이 가능한 BEGAN 모델을 사용하고, 그 복원된 흑백 이미지를 바탕으로 컬러화 작업을 수행한다. 최종적으로 다양한 유형의 얼굴 이미지와 마스크에 대한 실험 결과를 통해 기존 연구에 비해 많은 경우에 사실적인 컬러 복원 결과를 보여줄 수 있음을 확인하였다.

    영어초록

    In this paper, we propose a method to restore corrupted black and white facial images to color. Previous studies have shown that when coloring damaged black and white photographs, such as old ID photographs, the area around the damaged area is often incorrectly colored. To solve this problem, this paper proposes a method of restoring the damaged area of input photo first and then performing colorization based on the result. The proposed method consists of two steps: BEGAN (Boundary Equivalent Generative Adversarial Networks) model based restoration and CNN (Convolutional Neural Network) based coloring. Our method uses the BEGAN model, which enables a clearer and higher resolution image restoration than the existing methods using the DCGAN (Deep Convolutional Generative Adversarial Networks) model for image restoration, and performs colorization based on the restored black and white image. Finally, we confirmed that the experimental results of various types of facial images and masks can show realistic color restoration results in many cases compared with the previous studies.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 26일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:58 오전