• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

단변량 분석과 LVF 알고리즘을 결합한 하이브리드 속성선정 방법 (A Hybrid Feature Selection Method using Univariate Analysis and LVF Algorithm)

22 페이지
기타파일
최초등록일 2025.04.09 최종저작일 2008.12
22P 미리보기
단변량 분석과 LVF 알고리즘을 결합한 하이브리드 속성선정 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 14권 / 4호 / 179 ~ 200페이지
    · 저자명 : 이재식, 정미경

    초록

    본 연구에서는 사례기반 추론 기법을 대상으로 효율성과 효과성을 함께 증진시킬 수 있는 속성선정 방법을 개발하였다. 기본적으로, 본 연구에서 개발한 속성선정 방법은 기존에 개발된 단변량 분석 방법과 LVF 알고리즘을 통합하는 것이다. 먼저, 단변량 분석 방법 중 선택효과를 사용하여 전체 속성 중에서 예측력이 우수하다고 판단되는 일부분의 속성들을 추려낸다. 이 속성들로부터 생성해낼 수 있는 모든 가능한 부분집합을 생성해낸 후에, LVF 알고리즘을 이용하여 이 부분집합들이 가지는 불일치 비율을 평가함으로써 최종적으로 속성 부분집합을 선정한다. 본 연구에서 개발한 속성선정 방법을 UCI에서 제공하는 데이터 집합들에 적용하여 성능을 측정한 후, 기존 기법의 성능들과 비교한 결과, 본 연구에서 개발된 속성선정 방법이 선정된 속성의 개수도 만족할만하고 적중률도 향상되어서, 효율성과 효과성 모두의 측면에서 우수함을 보였다.

    영어초록

    We develop a feature selection method that can improve both the efficiency and the effectiveness of classification technique. In this research, we employ case-based reasoning as a classification technique. Basically, this research integrates the two existing feature selection methods, i.e., the univariate analysis and the LVF algorithm. First, we sift some predictive features from the whole set of features using the univariate analysis. Then, we generate all possible subsets of features from these predictive features and measure the inconsistency rate of each subset using the LVF algorithm. Finally, the subset having the lowest inconsistency rate is selected as the best subset of features. We measure the performances of our feature selection method using the data obtained from UCI Machine Learning Repository, and compare them with those of existing methods. The number of selected features and the accuracy of our feature selection method are so satisfactory that the improvements both in efficiency and effectiveness are achieved.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:13 오후