• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

패싯 기반 민원 다차원 분석을 위한 자동 분류 모델 (A Study on an Automatic Classification Model for Facet-Based Multidimensional Analysis of Civil Complaints)

10 페이지
기타파일
최초등록일 2025.04.08 최종저작일 2024.02
10P 미리보기
패싯 기반 민원 다차원 분석을 위한 자동 분류 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국산업정보학회
    · 수록지 정보 : 한국산업정보학회논문지 / 29권 / 1호 / 135 ~ 144페이지
    · 저자명 : 김나랑

    초록

    시민의 의견인 민원은 다양한 사람들이 여러 주제에 대하여 반복·지속적으로 실시간 쏟아내기 때문에 담당자가 이를 읽고 분석하는데 한계가 있다. 이에 본 연구에서는 빅데이터 분석을 통해 주요 현안에 대한 여론 및 요구 사항을 파악하기 위하여 정성적인 분석에 패싯을 기반으로 한 정량적인 다차원분석을 위한 자동 분류 모델을 제안하였다. 구체적으로 첫째, 패싯 이론과 정치분석모형을 기반으로 민원 특성을 분석하고 이를 정책 단계에 활용할 수 있는 새로운 분류 프레임워크를 제시하였다. 둘째, 민원분석 및 처리에 따른 행정 업무를 감소시키고, 시민들의 정책참여를 용이하게 하기 위해 딥러닝을 활용하여 패싯분석 프레임에 의해 자동으로 속성을 추출하고 분류 하였다. 본 연구결과는 학문적으로 민원 빅데이터의 특성을 이해하고 분석하는데 중요한 단초를 제공하여 향후 많은 후속 연구를 창출할 수 있을 것으로 기대되며, 공공분야를 넘어 교육, 산업, 의료 등 다른 분야에서의 비정형 데이터의 계량화를 위한 가이드 라인과 다차원분석의 활용에 대한 이론적 근거를 제시할 수 있다. 실무적으로 대용량 전자 민원에 대한 처리체계 개선 및 딥러닝을 통한 자동화로 민원처리 업무의 효율성과 신속성을 높일 수 있으며, 다른 분야의 텍스트 데이터의 처리에 활용될 수 있을 것이다.

    영어초록

    In this study, we propose an automatic classification model for quantitative multidimensional analysis based on facet theory to understand public opinions and demands on major issues through big data analysis. Civil complaints, as a form of public feedback, are generated by various individuals on multiple topics repeatedly and continuously in real-time, which can be challenging for officials to read and analyze efficiently. Specifically, our research introduces a new classification framework that utilizes facet theory and political analysis models to analyze the characteristics of citizen complaints and apply them to the policy-making process. Furthermore, to reduce administrative tasks related to complaint analysis and processing and to facilitate citizen policy participation, we employ deep learning to automatically extract and classify attributes based on the facet analysis framework. The results of this study are expected to provide important insights into understanding and analyzing the characteristics of big data related to citizen complaints, which can pave the way for future research in various fields beyond the public sector, such as education, industry, and healthcare, for quantifying unstructured data and utilizing multidimensional analysis. In practical terms, improving the processing system for large-scale electronic complaints and automation through deep learning can enhance the efficiency and responsiveness of complaint handling, and this approach can also be applied to text data processing in other fields.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산업정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:32 오전