PARTNER
검증된 파트너 제휴사 자료

CNN 추론 연산 가속기를 위한 곱셈기 최적화 설계 (Design of Multipliers Optimized for CNN Inference Accelerators)

6 페이지
기타파일
최초등록일 2025.03.21 최종저작일 2021.10
6P 미리보기
CNN 추론 연산 가속기를 위한 곱셈기 최적화 설계
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 25권 / 10호 / 1403 ~ 1408페이지
    · 저자명 : 이재우, 이재성

    초록

    AI 프로세서를 FPGA 기반으로 구현하는 연구가 최근 활발하게 진행되고 있다. Deep Convolutional Neural Networks (CNN) 는 AI 프로세서가 수행하는 기본적인 연산 구조로서 매우 방대한 양의 곱셈을 필요로 한다. CNN 추론 연산에서 사용되는 곱셈 계수는 상수라는 점과 FPGA 은 특정 계수에 맞춰진 곱셈기 설계가 용이하다는 점에 착안하여 곱셈기를 최적화 구현할 수 있는 방법을 제안한다. 본 방법은 2의 보수와 분배법칙을 활용하여 곱셈 계수에서 값이 1인 비트의 개수를 최소화하여 필요한 적층 덧셈기의 개수를 절감한다. CNN 을 FPGA 에 구현한 실제 예제에 본 방법을 적용해본 결과 로직 사용량은 최대 30.2%까지, 신호 전달 지연은 최대 22%까지 줄어들었다. ASIC 전용 칩으로 구현할 경우에도 하드웨어 면적은 최대 35%까지, 신호 전달 지연은 최대 19.2%까지 줄어드는 것으로 나타났다.

    영어초록

    Recently, FPGA-based AI processors are being studied actively. Deep convolutional neural networks (CNN) are basic computational structures performed by AI processors and require a very large amount of multiplication. Considering that the multiplication coefficients used in CNN inference operation are all constants and that an FPGA is easy to design a multiplier tailored to a specific coefficient, this paper proposes a methodology to optimize the multiplier. The method utilizes 2's complement and distributive law to minimize the number of bits with a value of 1 in a multiplication coefficient, and thereby reduces the number of required stacked adders. As a result of applying this method to the actual example of implementing CNN in FPGA, the logic usage is reduced by up to 30.2% and the propagation delay is also reduced by up to 22%. Even when implemented with an ASIC chip, the hardware area is reduced by up to 35% and the delay is reduced by up to 19.2%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:29 오전