• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구 (Algorithm improvement through AI-based casting process parameter optimization)

10 페이지
기타파일
최초등록일 2025.03.15 최종저작일 2023.12
10P 미리보기
증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국전자통신학회
    · 수록지 정보 : 한국전자통신학회 논문지 / 18권 / 6호 / 1321 ~ 1330페이지
    · 저자명 : 이석환, 이정금, 심현

    초록

    본 연구는 증강현실에서 적용할 캐릭터 생성에서 단일 이미지를 통해 여러 객체에 대한 3D 자세 추정 문제를 다루려 한다. 기존 top-down 방식에서는 이미지 내의 모든 객체를 먼저 감지하고, 그 후에 각각의 객체를 독립적으로 재구성한다. 문제는 이렇게 재구성된 객체들 사이의 중첩이나 깊이 순서가 불일치 하는 일관성 없는 결과가 발생할 수 있다. 본 연구의 목적은 이러한 문제점을 해결하고, 장면 내의 모든 사람 객체에 대한 일관된 3D 재구성을 제공하는 단일 네트워크를 개발하는 것이다. SMPL 매개변수체를 기반으로 한 인체 모델을 top-down 프레임워크에 통합하는 것이 중요한 선택이 되었다. 이를 통해 거리 필드 기반의 충돌 손실과 깊이 순서를 고려하는 손실 두 가지를 도입하였다. 첫 번째 손실은 재구성된 사람들 사이의 중첩을 방지하며, 두 번째 손실은 가림막 추론과 주석이 달린 인스턴스 분할을 일관되게 렌더링하기 위해 사람들의 깊이 순서를 조정한다. 이러한 방법은 네트워크에 이미지의 명시적인 3D 주석 없이도 깊이 정보를 제공하게 한다. 실험 결과, 본 연구의 방법론은 표준 3D 자세 벤치마크에서 기존 방법보다 더 나은 성능을 보여주었고, 제안된 손실들은 자연 이미지에서 더욱 일관된 재구성을 실현하게 하였다.

    영어초록

    This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:25 오후