• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

임계값 학습 모듈을 적용한 준지도 SAR 이미지 분류 (Semi-supervised SAR Image Classification with Threshold Learning Module)

11 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2023.12
11P 미리보기
임계값 학습 모듈을 적용한 준지도 SAR 이미지 분류
  • 미리보기

    서지정보

    · 발행기관 : 사)한국빅데이터학회
    · 수록지 정보 : 한국빅데이터학회 학회지 / 8권 / 2호 / 177 ~ 187페이지
    · 저자명 : 도재준, 김선옥

    초록

    준지도 학습(Semi-supervised learning)은 소량의 라벨이 있는 데이터와 다량의 라벨이 없는 데이터를 사용하여모델을 훈련하는 효과적인 방법이다. 그러나 많은 논문에서 준지도 학습시 하나의 고정된 임계값을 사용하여각 클래스별 서로 다른 이미지들의 특징별 차이를 고려하지 않고 임의 라벨을 만든다. 본 논문에서는 합성개구레이더(SAR) 이미지 분류 준지도 학습시 모든 클래스가 하나의 고정된 임계값을 사용하는 대신 각 클래스에 대해 서로 다른 임계값을 적용한다. 모델에 임계값 학습 모듈을 추가하여 임계값을 학습하여 클래스별로 학습되는 차이를 고려하여 클래스별로 서로 다른 임계값을 얻는다. 서로 다른 임계값을 사용한 준지도 학습 기반의 SAR 이미지 분류 방법을 적용유무를 비교하여 클래스별 임계값을 사용하는 이점에 대해 고찰하였다.

    영어초록

    Semi-supervised learning (SSL) is an effective approach to training models using a small amount of labeled data and a larger amount of unlabeled data. However, many papers in the field use a fixed threshold when applying pseudo-labels without considering the feature-wise differences among images of different classes. In this paper, we propose a SSL method for synthetic aperture radar (SAR) image classification that applies different thresholds for each class instead of using a single fixed threshold for all classes. We propose a threshold learning module into the model, considering the differences in feature distributions among classes, to dynamically learn thresholds for each class. We compare the application of a SSL SAR image classification method using different thresholds and examined the advantages of employing class-specific thresholds.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국빅데이터학회 학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 07일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:42 오후