• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

연관 아이템 트리를 이용한 추천 에이전트 (A Recommender Agent using Association Item Trees)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
8 페이지
기타파일
최초등록일 2025.03.03 최종저작일 2009.04
8P 미리보기
연관 아이템 트리를 이용한 추천 에이전트
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 36권 / 4호 / 298 ~ 305페이지
    · 저자명 : 고수정

    초록

    협력적 여과 시스템은 내용 기반 여과 시스템과는 대조적으로 아이템에 대한 정보를 반영하지 않으며, 또한 사용자가 자신의 흥미에 대한 정보를 제공하지 않았을 경우 추천을 할 수 없다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 단점을 해결하기 위하여 연관 아이템 트리를 이용한 추천 에이전트를 제안한다. 제안된 방법은 벡터 공간 모델과 K-means 알고리즘을 이용하여 사용자를 군집시킨 후 그룹의 대표 평가값을 추출한다. 다음으로, 군집된 그룹별로 아이템간의 상호정보량을 계산하여 아이템간의 연관도를 파악하며, 이를 기반으로 연관 아이템 트리를 생성한다. 이와 같이 생성한 각 그룹의 연관 아이템 트리와 그룹의 대표 평가값을 이용하여 새로운 사용자에게 아이템을 추천한다. 제안된 추천 에이전트는 사용자 정보와 아이템 정보를 병합하여 새로운 사용자에게 아이템을 추천하며, 아이템간의 유사도를 계산하기 위하여 상호정보량을 사용하고 이를 기반으로 연관 아이템 트리를 생성함으로써 초기에 아이템에 대하여 평가한 정보가 부족한 사용자에게 정확도가 높은 아이템을 추천할 수 있다는 장점을 갖는다. 제안된 방법은 MovieLens 추천 시스템의 데이터 집합을 사용하여 기존의 방법과 비교하였다.

    영어초록

    In contrast to content_based filtering systems, collaborative filtering systems not only don’t contain information of items, they can not recommend items when users don’t provide the information of their interests. In this paper, we propose the recommender agent using association item tree to solve the shortcomings of collaborative filtering systems. Firstly, the proposed method clusters users into groups using vector space model and K-means algorithm and selects group typical rating values. Secondly, the degree of associations between items is extracted from computing mutual information between items and an associative item tree is generated by group. Finally, the method recommends items to an active user by using a group typical rating value and an association item tree. The recommender agent recommends items by combining user information with item information. In addition, it can accurately recommend items to an active user, whose information is insufficient at first rate, by using an association item tree based on mutual information for the similarity between items. The proposed method is compared with previous methods on the data set of MovieLens recommender system.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 01일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:25 오후