PARTNER
검증된 파트너 제휴사 자료

범주형 데이터의 분류를 위한 퍼지 군집화 기법

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
6 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2003.12
6P 미리보기
범주형 데이터의 분류를 위한 퍼지 군집화 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 13권 / 6호 / 661 ~ 666페이지
    · 저자명 : 김대원, 이광형

    초록

    본 논문에서는 범주형 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 k-modes 알고리즘과 fuzzy k-modes 알고리즘은 군집의 중심을 단일 값으로 표현하고, 군집에 속하는 데이터의 빈도 수에 기반한 중심 갱신 기법을 사용하였다. 이와 같은 기존의 방법들은 분류의 경계가 모호한 데이터를 군집화할 경우, 알고리즘의 각 단계에서 발생하는 분류의 에러를 보정하지 못해 최종적으로 지역해에 빠지는 단점이 있다. 이를 극복하기 위해 본 논문에서는 군집 중심을 퍼지 집합을 이용하여 정의한다. 퍼지 군집 중심은 주어진 데이터와 군집간의 거리 관계를 퍼지 값을 이용해 표현하며, 각 군집의 중심은 데이터의 소속 정도 값을 이용해 갱신된다. 이와 같은 퍼지 중심 표현기법을 도입하여 범주형 데이터의 분류 시에 보다 세밀한 결정을 내림으로써, 인접한 군집들의 경계에서 발생하는 불확실성을 최소화한다. 기존의 대표적인 방법들과의 비교실험을 수행함으로써 제안한 방법의 성능을 검증하였다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 06일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:27 오전