• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료

A review of Hydrogel complex/수화물 복합체의 리뷰

"A review of Hydrogel complex/수화물 복합체의 리뷰"에 대한 내용입니다.
59 페이지
워드
최초등록일 2023.05.09 최종저작일 2021.10
59P 미리보기
A review of Hydrogel complex/수화물 복합체의 리뷰
  • 미리보기

    소개

    "A review of Hydrogel complex/수화물 복합체의 리뷰"에 대한 내용입니다.

    목차

    1. Introduction

    2. Macrogel
    2-1 Cesium adsorbent
    2-2 Microfluidic device
    2-2-1 Pump strategy
    2-2-2 Sensor
    2-3 Therapy
    2-3-1 Photothermal therapy
    2-3-2 Chemotherapy
    2-3-3 Multitherapy
    2-3-3-1 Photothermal therapy + starvation therapy
    2-3-3-2 Photothermal therapy + chemotherapy
    2-4 Acutator
    2-5 Microdevices
    2-5-1 Microvalve

    3. Microgel
    3-1 PNIPAAm-Prussian blue
    3-2 PNIPAAm-iron oxide
    3-3 PNIPAAm-gold
    3-4 PNIPAAm-carbon sphere
    3-5 PNIPAAm-polydopamine
    3-6 PNIPAAm-ZnO
    3-7 PNIPAAm-silver

    4. Nanogel
    4-1 Photothermal responsive
    4-2 Magnetic responsive
    4-3 Thermal responsive
    4-4 pH responsive
    4-5 Dual responsive
    4-5-1 Thermal & pH responsive
    4-5-2 Thermal & ion responsive

    5. Non-hydrogel-Prussian blue

    6. Prussian blue
    6-1 polymer modified Prussian blue
    6-2 Hollow Prussian blue
    6-3 Core-shell
    6-3-1 Prussian blue core-Fe3O4 shell
    6-3-2 Fe¬3O4 core-Prussian blue shell

    7. Reference

    본문내용

    하이드로젤 (hydrogel)은 높은 친수성을 갖지만 물에는 불용성인 3차원 고분자 네트워크의 한 종류로서 고분자 사슬이 물리적 또는 화학적인 가교로 인해서 합성할 수 있습니다. 또한 크기별로 nanogel (20-200 nm), microgel (300-1000 nm), macrogel (20-200 um)로 구분지을 수 있습니다. [1] 이러한 하이드로젤중에서 외부 자극 (온도, pH, 빛, 자기장, 전기장)에 의해서 졸-젤 전이 (sol-gel transition)를 조절할 수 있습니다. 그 중에서도 poly(N-isoproplyacrlyamide) (PNIPAAm)은 가장 많이 연구된 온도 감응 하이드로젤로서, 32~35 ℃에서 젤화가 일어나고 식으면 다시 졸상태로 열 가역적인 젤화 특성을 가지고 있습니다. 이러한 친수성/소수성 상태의 가역성은 LCST (low critical solution temperature) 이하 또는 이상 온도를 변화시킴으로써 발생합니다.
    PNIPAAm은 아래 그림과 같이 극성기인 C=O, N-H와 비극성기인 iso-proyl 기, 고분자 backbone을 가지고 있다. Cloud point를 기준으로 낮을 때는 수화된 상태로 hydrophilic state라고 불리고, 높을 때는 탈수화된 상태로 collapsed state라고 불린다. 온도가 낮을 때는 극성기가 물과 잘 상호작용을 하기 때문에 잘 녹거나 팽창되어 있는 상태이지만, 온도가 높을 때는 비극성기끼리 상호작용하는 힘이 더 크기 때문에 수축되어 불용성을 갖게 됩니다. 따라서 온도에 따라서 가역적으로 팽창과 수축을 할 수 있습니다.[2]

    PNIPAAm의 LCST는 인간의 체온 (약 36.5~37.5 ℃)에 가깝고, 생체적합성을 가지고 있기 때문에 특히, PNIPAAm에 대한 많은 연구가 진행되고 있습니다. PNPAAm 하이드로젤은 라디칼 중합을 통해 중합할 수 있으며 다른 monomer와 함께 중합되어 블록 공중합체를 이룰 수 있고, 가교를 시켜 젤로도 중합할 수 있습니다. [2,3]

    참고자료

    · Yallapu, Murali Mohan, Meena Jaggi, and Subhash C. Chauhan. "Design and engineering of nanogels for cancer treatment." Drug discovery today 16.9-10 (2011): 457-463.
    · Lanzalaco, Sonia, and Elaine Armelin. "Poly (n-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications." Gels 3.4 (2017): 36.
    · Echeverria, Coro, et al. "Functional stimuli-responsive gels: Hydrogels and microgels." Gels 4.2 (2018): 54.
    · Kamachi, Yuichiro, et al. "Hydrogels containing Prussian blue nanoparticles toward removal of radioactive cesium ions." Journal of nanoscience and nanotechnology 16.4 (2016): 4200-4204.
    · Moon, Seongjun, et al. "Prussian blue decorated hydrogel particles for effective removal of cesium ion from aqueous media." Polymer 186 (2020): 122029.
    · Oh, Daemin, et al. "Enhanced immobilization of Prussian blue through hydrogel formation by polymerization of acrylic acid for radioactive cesium adsorption." Scientific reports 9.1 (2019): 1-12.
    · Fu, Guanglei, et al. "Spatiotemporally Controlled Multiplexed Photothermal Microfluidic Pumping under Monitoring of On-Chip Thermal Imaging." ACS sensors 4.9 (2019): 2481-2490.
    · Fu, Guanglei, et al. "Photothermal Microfluidic Sensing Platform Using Near-Infrared Laser-Driven Multiplexed Dual-Mode Visual Quantitative Readout." Analytical chemistry 91.20 (2019): 13290-13296.
    · Fu, Jijun, et al. "Prussian blue nanosphere-embedded in situ hydrogel for photothermal therapy by peritumoral administration." Acta Pharmaceutica Sinica B 9.3 (2019): 604-614.
    · Sershen, S. R., et al. "Temperature‐sensitive polymer–nanoshell composites for photothermally modulated drug delivery." Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 51.3 (2000): 293-298.
    · Qiu, Meng, et al. "Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy." Proceedings of the National Academy of Sciences 115.3 (2018): 501-506.
    · Hao, Yijun, et al. "A robust hybrid nanozyme@ hydrogel platform as a biomimetic cascade bioreactor for combination antitumor therapy." Biomaterials Science 8.7 (2020): 1830-1839.
    · Liang, Yuqing, et al. "Integrated Hydrogel Platform for Programmed Antitumor Therapy Based on Near Infrared-Triggered Hyperthermia and Vascular Disruption." ACS applied materials & interfaces 11.24 (2019): 21381-21390.
    · Lee, Eunsu, et al. "Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles." Scientific reports 5 (2015): 15124.
    · Zhu, Chun‐Hua, et al. "Photothermal poly (N‐isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control." Small 10.14 (2014): 2796-2800.
    · Zhu, Chun‐Hua, et al. "Hydrogels: Photothermally Sensitive Poly (N‐isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light‐Controlled Liquid Microvalves (Adv. Funct. Mater. 19/2012)." Advanced Functional Materials 22.19 (2012): 4016-4016.
    · Ke, Xi-xian, et al. "Morphology and Thermoresponsive Behavior of Hybrid Micelles of Polystyrene-b-Poly ((N-isopropyl acrylamide)-co-(4-vinylbenzyl chloride)) with Prussian Blue." Chinese Journal of Polymer Science 33.7 (2015): 1038-1047.
    · Lee, Su-Kyoung, Yongdoo Park, and Jongseong Kim. "Thermoresponsive Behavior of Magnetic Nanoparticle Complexed pNIPAm-co-AAc Microgels." Applied Sciences 8.10 (2018): 1984.
    · Qi, Xiaofang, et al. "Near infrared laser-controlled drug release of thermoresponsive microgel encapsulated with Fe 3 O 4 nanoparticles." RSC advances 7.32 (2017): 19604-19610.
    · Regmi, Rajesh, et al. "Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels." Journal of Materials Chemistry 20.29 (2010): 6158-6163.
    · Choe, Ayoung, et al. "Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film." NPG Asia Materials 10.9 (2018): 912-922.
    · Wei, Menglian, and Michael J. Serpe. "Temperature–Light Dual‐Responsive Au@ PNIPAm Core‐Shell Microgel‐Based Optical Devices." Particle & Particle Systems Characterization 36.1 (2019): 1800326.
    · de Solorzano, Isabel Ortiz, et al. "Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light." Nanomedicine 15.3 (2020): 219-234.
    · Chen, Yun-Sheng, et al. "Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators." Nature communications 8.1 (2017): 1-10.
    · Guo, Xingmei, et al. "Grafting thermosensitive PNIPAM onto the surface of carbon spheres." Applied surface science 321 (2014): 116-125.
    · Xu, Xiaohui, et al. "A near-infrared and temperature-responsive pesticide release platform through core–shell polydopamine@ PNIPAm nanocomposites." ACS Applied Materials & Interfaces 9.7 (2017): 6424-6432.
    · Tan, Licheng, et al. "A novel thermal and pH responsive drug delivery system based on ZnO@ PNIPAM hybrid nanoparticles." Materials Science and Engineering: C 45 (2014): 524-529.
    · Bryan, William W., et al. "Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules." Beilstein journal of nanotechnology 10.1 (2019): 1973-1982.
    · Shen, Song, et al. "Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor." Nanomedicine: Nanotechnology, Biology and Medicine 13.5 (2017): 1607-1616.
    · Marpu, Sreekar Babu, et al. "Single-Step Photochemical Formation of Near-Infrared-Absorbing Gold Nanomosaic within PNIPAm Microgels: Candidates for Photothermal Drug Delivery." Nanomaterials 10.7 (2020): 1251.
    · Wadajkar, Aniket S., et al. "Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles." Biomaterials 34.14 (2013): 3618-3625.
    · Denmark, D. J., et al. "Remote triggering of thermoresponsive PNIPAM by iron oxide nanoparticles." RSC advances 6.7 (2016): 5641-5652.
    · Jaiswal, Manish K., et al. "Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumors in experimental mice models." Biomaterials Science 2.3 (2014): 370-380.
    · Koppolu, Bhanuprasanth, et al. "Temperature-sensitive polymer-coated magnetic nanoparticles as a potential drug delivery system for targeted therapy of thyroid cancer." Journal of biomedical nanotechnology 8.6 (2012): 983-990.
    · Pan, Yongzheng, et al. "Water‐soluble poly (N‐isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery." Advanced Functional Materials 21.14 (2011): 2754-2763.
    · Rahimi, Maham, et al. "In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery." Nanomedicine: Nanotechnology, Biology and Medicine 6.5 (2010): 672-680.
    · Rahimi, Maham, et al. "Synthesis and characterization of thermo-sensitive nanoparticles for drug delivery applications." Journal of biomedical nanotechnology 4.4 (2008): 482-490.
    · Zhang, Hao-Hao, et al. "Synthesis and application prospect of prussian blue coated with carboxyl chitosan hydrogel." Ferroelectrics 529.1 (2018): 100-104.
    · Medeiros, Simone F., et al. "Fabrication of biocompatible and stimuli-responsive hybrid microgels with magnetic properties via aqueous precipitation polymerization." Materials Letters 175 (2016): 296-299.
    · Maji, Samarendra, et al. "Poly (N-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors." Polymer Chemistry 7.9 (2016): 1705-1710.
    · Qian, Jun, et al. "A thermo-sensitive polymer network crosslinked by Prussian blue nanocrystals for cesium adsorption from aqueous solution with large capacity." Journal of Materials Chemistry A 5.42 (2017): 22380-22388.
    · Wi, Hyobin, et al. "Surface modification of poly (vinyl alcohol) sponge by acrylic acid to immobilize Prussian blue for selective adsorption of aqueous cesium." Chemosphere 226 (2019): 173-182.
    · Xian, Yuezhong, et al. "Preparation of poly (vinylpyrrolidone)-protected Prussian blue nanoparticles-modified electrode and its electrocatalytic reduction for hemoglobin." Analytica chimica acta 546.2 (2005): 139-146.
    · Kang, Sung-Min, et al. "Microfluidic generation of Prussian blue-laden magnetic micro-adsorbents for cesium removal." Chemical Engineering Journal 341 (2018): 218-226.
    · Su, Yun Yan, et al. "A multifunctional PB@ mSiO2–PEG/DOX nanoplatform for combined photothermal–chemotherapy of tumor." ACS Applied Materials & Interfaces 8.27 (2016): 17038-17046.
    · Chen, Huajian, et al. "Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer." RSC advances 7.1 (2017): 248-255.
    · Xue, Peng, et al. "An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy." Colloids and Surfaces B: Biointerfaces 125 (2015): 277-283.
    · Chen, Huajian, et al. "Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance." Journal of Materials Chemistry B 5.34 (2017): 7051-7058.
    · Chen, Wansong, et al. "Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic photothermal‐/chemotherapy of cancer." Advanced Functional Materials 27.11 (2017): 1605795.
    · Liu, Bin, et al. "RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer." Biomaterials 217 (2019): 119301.
    · Chang, Ling, et al. "Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal." RSC advances 6.98 (2016): 96223-96228.
    · Jiang, Tingting, et al. "Prussian blue-encapsulated Fe3O4 nanoparticles for reusable photothermal sterilization of water." Journal of colloid and interface science 540 (2019): 354-361.
    · Guo, Yi-Fei, et al. "Synthesis of Mesoporous Yolk-Shell Magnetic Prussian Blue Particles for Multi-Functional Nanomedicine." Journal of nanoscience and nanotechnology 18.5 (2018): 3059-3066.
  • 자료후기

      Ai 리뷰
      하이드로젤의 온도 감응성, 생체적합성, 다양한 크기 조절 등의 장점을 활용하여 약물 전달, 센서, 액추에이터, 치료제 등 다양한 분야에 적용하고자 하는 연구가 활발히 진행되고 있습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    • 전문가 요청 쿠폰 이벤트
    • 전문가요청 배너
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 12월 02일 화요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    3:48 오후