총 154개
-
중앙대 전자회로설계실습 결과5.BJT와 MOSFET을 사용한 구동(Switch)회로 A+2025.01.271. BJT와 MOSFET을 사용한 구동(Switch)회로 이 프레젠테이션은 중앙대학교 전자회로설계실습 수업의 결과물로, BJT(바이폴라 접합 트랜지스터)와 MOSFET(금속-산화물-반도체 전계 효과 트랜지스터)을 사용한 구동(스위치) 회로를 설계하고 구현한 내용을 다루고 있습니다. 실험 과정에서 LED 구동 회로를 구현하고 측정하였으며, 회로의 동작 특성과 소비 전력 등을 분석하였습니다. 실험 결과에서 약 20%를 넘는 오차율이 발생했는데, 이는 설계 과정에서 사용한 저항값과 실제 실험에서 사용한 저항값의 차이, 다이오드 불량 등...2025.01.27
-
MOSFET 기본특성 실험 결과 보고서2025.01.021. NMOS 특성 NMOS 실험에서는 가장 낮은 저항 2개를 병렬로 연결하여 입력 측에 사용했으나, 출력 전압이 예상과 달리 측정되었다. Vgs와 Vds를 인가했을 때 NMOS는 차단 영역, 선형 영역(triode 영역), 포화 영역을 거치며 동작하는 것을 확인할 수 있었다. 채널 길이 변조 효과로 인해 선형 영역과 포화 영역에서 Vds와 Id의 관계가 달라지는 것을 관찰할 수 있었다. 2. PMOS 특성 PMOS 실험에서는 가장 낮은 저항 2개를 병렬로 연결하여 입력 측에 사용했으나, 출력 전압이 예상보다 낮아져 파워 서플라이가...2025.01.02
-
전자회로실험 과탑 A+ 예비 보고서 (실험 13 공통 게이트 증폭기)2025.01.291. 공통 게이트 증폭기 공통 게이트 증폭기는 게이트 단자를 공통으로 하고, 입력 신호가 소스에, 출력 신호가 드레인에 걸리는 회로입니다. 이 회로는 주로 넓은 대역폭에서 동작하며, 전류 이득이 큰 것이 특징입니다. 입력 신호는 소스 단자에 인가되며, 드레인에서 출력 신호가 나타납니다. 게이트는 고정되어 있어, 입력 신호는 소스에서 드레인으로 흐르는 전류를 제어하게 됩니다. 입력 임피던스는 매우 낮고, 출력 임피던스는 상대적으로 높습니다. 전압 이득은 대략적으로 g_m * R_D로 나타낼 수 있으며, 공통 게이트 증폭기는 전류 이득...2025.01.29
-
중앙대 전자회로 설계 실습 예비보고서 8_MOSFET Current Mirror 설계2025.01.111. MOSFET Current Mirror 설계 이 보고서는 MOSFET Current Mirror 설계에 대한 내용을 다루고 있습니다. 단일 Current Mirror 설계와 Cascode Current Mirror 설계에 대해 설명하고 있으며, 각 회로의 설계 과정과 시뮬레이션 결과를 제시하고 있습니다. 단일 Current Mirror 설계에서는 2N7000 MOSFET을 이용하여 10mA의 전류원을 설계하는 과정을 보여주며, Cascode Current Mirror 설계에서는 10mA의 Cascode 전류원을 설계하는 과정을...2025.01.11
-
MOSFET Current Mirror 설계 및 특성 분석2025.11.111. 단일 Current Mirror 설계 N-Type MOSFET 2N7000을 이용하여 10mA의 Reference 전류가 흐르는 단일 Current Mirror를 설계한다. Gate threshold voltage는 2.1V, on-stage drain current는 75mA이다. Saturation 영역에서 동작하기 위해 VDS > 0.09V 조건을 만족해야 하며, 출력저항은 ∆VDS/∆ID로 구한다. OrCAD 설계 및 PSPICE 시뮬레이션을 통해 VGS=2.34V, ID=9.808mA~10mA의 특성을 확인한다. 2....2025.11.11
-
전자회로실험 과탑 A+ 결과 보고서 (실험 10 MOSFET 바이어스 회로)2025.01.291. 게이트 바이어스 회로 게이트 바이어스 회로는 가장 기본적인 전압분배 MOSFET 바이어스 회로이다. 이 회로는 소스 단자에 저항 R_S를 추가함으로써, R_G1과 R_G2의 변화에 따른 V_GS전압과 I_D 전류의 변화를 줄일 수 있다. 회로의 각 노드의 전압과 전류를 구하면 I_D와 V_GS를 안정적으로 유지할 수 있다. 이 회로는 전류 제어가 용이하고, 트랜지스터가 포화 영역에서 증폭기로 안정적으로 동작하는 데 적합하다. 2. 다이오드로 연결된 MOSFET 바이어스 회로 다이오드로 연결된 MOSFET 바이어스 회로는 피드백...2025.01.29
-
실험 10_MOSFET 바이어스 회로 예비 보고서2025.04.271. MOSFET 바이어스 회로 MOSFET을 증폭기로 동작시키기 위해서는 적절한 DC 바이어스가 인가되어야 하며, 이때의 DC 바이어스를 동작점 또는 Q점이라고 부른다. DC 바이어스는 증폭기의 전압 이득과 스윙을 결정하는 중요한 역할을 한다. 이 실험에서는 MOSFET을 이용한 증폭기의 DC 동작점을 잡아주기 위한 바이어스 회로에 대해서 공부하고, 실험을 통하여 그 동작을 확인하고자 한다. 2. 전압분배 MOSFET 바이어스 회로 그림 [10-1]은 가장 기본적인 전압분배 MOSFET 바이어스 회로이다. 이 회로는 소오스 단자에...2025.04.27
-
실험 10_MOSFET 바이어스 회로 결과 보고서2025.04.281. MOSFET 바이어스 회로 MOSFET을 증폭기로 동작시키기 위해서는 적절한 DC 바이어스가 인가되어야 하며, 이때의 DC 바이어스를 동작점 또는 Q점이라고 부른다. DC 바이어스는 증폭기의 전압 이득과 스윙을 결정하는 중요한 역할을 한다. 이 실험에서는 MOSFET을 이용한 증폭기의 DC 동작점을 잡아주기 위한 바이어스 회로에 대해서 공부하고, 실험을 통하여 그 동작을 확인하고자 한다. 2. MOSFET 바이어스 회로 구성 실험회로 1에서 드레인 전압이 8V, 드레인 전류가 1mA가 되도록 R_S, R_1, R_2를 구하였다...2025.04.28
-
건국대 물및실2 코일의 자기장 측정 A+ 예비 레포트2025.01.211. 자기장의 공간적 분포 실험 목적은 자기장의 공간적 분포를 수식으로 이해하고, 솔레노이드와 헬름홀츠 코일에서 자기장의 분포를 이해하여 거리에 따른 그래프를 그릴 수 있는 것입니다. 또한 헬름홀츠 코일의 중앙에서 자기장의 세기가 일정하게 유지되는 이유를 알 수 있습니다. 2. 비오-사바르 법칙 비오-사바르 법칙은 전류에 의해 발생되는 주변 자기장과의 관계를 실험을 통해서 구한 법칙입니다. 회로에 전류 I가 흐를 때, 이 회로에서 원점에 놓인 미소전류가 r만큼 떨어진 곳에서 만드는 자기장을 설명합니다. 3. 헬름홀츠 코일의 자기장 ...2025.01.21
-
실험 20_차동 증폭기 기초 실험 결과 보고서2025.04.281. 차동 증폭 회로 차동 증폭 회로(differential amplifier)는 출력이 단일한 단일 증폭 회로(single-ended amplifier)에 비하여 노이즈와 간섭에 의한 영향이 적고, 바이패스(bypass) 및 커플링(coupling) 커패시터를 사용하지 않고도 증폭 회로를 바이어싱하거나 다단 증폭기의 각 단을 용이하게 커플링할 수 있으므로, 집적회로의 제작 공정이 좀더 용이하여 널리 사용되고 있다. 2. MOSFET 차동 증폭 회로 이 실험에서는 MOSFET을 사용한 차동 쌍의 동작을 위한 기본 조건을 살펴보고 기...2025.04.28
