
총 76개
-
고등학교 수학 평가기준안 - 심화수학22025.01.141. 부정적분 여러 가지 함수의 부정적분을 구할 수 있고, 치환적분법과 부분적분법을 이해하고 활용할 수 있다. 2. 정적분 구분구적법과 정적분의 뜻을 이해하고, 곡선으로 둘러싸인 도형의 넓이, 입체도형의 부피, 속도와 거리에 관한 문제, 평면상의 곡선의 길이를 구할 수 있다. 3. 이차곡선 포물선, 타원, 쌍곡선의 방정식을 구할 수 있고, 이차곡선과 직선의 위치 관계를 이해하여 접선의 방정식을 구할 수 있다. 4. 공간도형과 공간좌표 직선과 직선, 직선과 평면, 평면과 평면의 위치 관계에 대한 간단한 증명을 할 수 있고, 삼수선의 ...2025.01.14
-
수학2 평가계획서(평가기준안)2025.05.021. 함수의 극한과 연속 함수의 극한과 연속에 대한 수학적 개념과 성질을 이해하고, 이를 활용하여 다양한 문제를 해결할 수 있다. 극한값, 연속성, 미분가능성 등의 개념을 이해하고 이를 실생활 문제에 적용할 수 있다. 2. 미분 미분계수, 도함수, 접선의 방정식, 함수의 증감, 극대 극소 등 미분과 관련된 개념을 이해하고 이를 활용하여 다양한 문제를 해결할 수 있다. 미분을 통해 함수의 성질을 분석하고 최적화 문제를 해결할 수 있다. 3. 적분 부정적분과 정적분의 개념을 이해하고, 이를 활용하여 도형의 넓이와 부피, 속도와 거리 등...2025.05.02
-
대학수학에서 배우는 수학, 배우고 싶은 수학2025.01.211. 미적분학 미적분학은 변화율과 누적값을 다루는 수학의 기초 분야로, 연속적인 변화를 다루며 극한, 미분, 적분 개념을 중심으로 한다. 물리학, 공학, 경제학 등 거의 모든 과학 분야에서 광범위하게 사용되며, 건축 분야에서는 구조물의 응력 분석, 열 전달 계산, 곡면 설계 등에 활용된다. 2. 선형대수학 선형대수학은 벡터, 행렬, 선형 변환 등을 연구하는 분야로, 다차원 공간에서의 선형 관계를 다루며 연립방정식 해법에 중점을 둔다. 컴퓨터 그래픽스, 기계 학습, 양자 역학 등에서 핵심적인 역할을 하며, 건축 분야에서는 3D 모델링...2025.01.21
-
아주대학교 A+전자회로실험 실험3 예비보고서2025.05.091. 미분기 미분기는 입력 신호 파형의 시간 미분에 비례하여 출력을 발생하는 기능을 갖는다. 주파수 영역에서 분석하면 입출력 관계식은 V_o/V_i = -R_F/(R_s + 1/jωC)이며, ω→∞이면 V_o/V_i = -R_F/R_s가 된다. 따라서 입력 신호의 주파수가 cutoff frequency f_c = 1/(2πR_sC)보다 낮은 주파수에서만 미분기로 작용한다. 이보다 높은 주파수에서는 반전 증폭기가 된다. 미분기는 펄스 응답에서 직렬 RC 회로로, 주파수 응답에서 고역 통과 필터로 사용된다. 2. 적분기 적분기는 입력 ...2025.05.09
-
미적분 교과 지필 및 수행평가 계획서2025.05.021. 수열의 극한 수열의 수렴과 발산, 급수, 부분합, 급수의 합, 등비급수 등과 관련된 수학적 표현의 의미를 이해하고 다른 사람에게 설명할 수 있다. 적합한 공학적 도구와 수학적 모델링을 이용하여 수열의 극한에 관한 다양한 문제를 해결할 수 있다. 수열의 극한에 대한 수학적 아이디어와 개념을 탐구하고, 문제 상황을 수학적으로 분석하고 해석하여 최적의 해결 방안을 탐색할 수 있다. 2. 미분법 자연로그, 삼각함수의 덧셈정리, 매개변수, 음함수, 이계도함수, 변곡점 등과 관련된 수학적 표현의 의미를 이해하고 여러 가지 미분법과 관련된...2025.05.02
-
미적분 세특 3D프린팅과 임플란트2025.04.291. 3D 프린팅 속의 미적분 3차원 프린팅은 수학 방정식인 미분을 적용해 복제할 물건을 얇은 두께로 잘라 분석한 뒤, 직선을 모아 곡선을 만드는 적분으로 얇은 막을 한 층씩 쌓아 물체의 바닥부터 꼭대기까지 완성하게 된다. 3D프린터로 출력하기 위해 층층으로 나누는 과정을 슬라이싱이라 하며, 이는 미분과 유사하다. 이후 층층이 쌓아올려 3차원 입체구조를 만들게 되는데 이 과정을 적층체조라 하며, 이 과정은 적분과 유사하다. 2. 3D프린팅에서 사용되는 PID제어 속의 미적분 3D프린팅의 압출기 온도제어기술에 주로 이용되는 PID제어...2025.04.29
-
미적분 교수 학습 운영 계획(평가계획서)2025.01.171. 수열의 극한 수열의 수렴과 발산, 급수, 부분합, 급수의 합, 등비급수 등과 관련된 수학적 표현의 의미를 이해하고 다른 사람에게 설명할 수 있다. 적합한 공학적 도구와 수학적 모델링을 이용하여 수열의 극한에 관한 다양한 문제를 해결할 수 있다. 수열의 극한에 대한 수학적 아이디어와 개념을 탐구하고, 문제 상황을 수학적으로 분석하고 해석하여 최적의 해결 방안을 탐색할 수 있다. 2. 미분법 자연로그, 삼각함수의 덧셈정리, 매개변수, 음함수, 이계도함수, 변곡점 등과 관련된 수학적 표현의 의미를 이해하고 여러 가지 미분법과 관련된...2025.01.17
-
이과생들의 수학 교과 세특 기재 예문2025.05.131. 수학 1 부등식의 영역을 통해 최대 최소를 구하는 방법을 이해하고 있으며 모든 상황을 부등식으로 표현하여 최대 최소가 될 수 있는 모든 점을 찾음. 생산 지점에 따른 생산 조건을 이해하고 조건에 따른 최적 지점 및 비용 변화를 추론할 때 수학적 근거가 다소 부족함을 채우기 위해 직관적 방법만이 아닌 수학적인 도구를 사용하여 결과를 해석하는 능력이 우수함. 2. 수학 2 수열의 귀납적 정의를 이해하고 있으며 일반항과 수열의 합의 관계를 잘 표현함. 엑셀을 다루는데 아직 미숙하여 주어진 수열을 그래프로 표현하는 데 어려움을 겪었지...2025.05.13
-
아르키메데스의 수학적 업적2025.01.201. 원주율 계산 아르키메데스는 실진법을 이용하여 원주율 π의 근삿값을 최초로 구했다. 그는 원에 내접하는 정육각형과 외접하는 정육각형의 둘레 길이를 이용하여 π의 값이 3과 3.47 사이에 있다는 것을 밝혀냈다. 이후 변의 개수를 늘려가며 더 정확한 값을 구했고, 최종적으로 π의 값이 3.1416임을 증명했다. 이는 당시 그리스에서 알려진 가장 정확한 원주율 값이었다. 2. 곡선 및 곡면 도형의 넓이와 부피 계산 아르키메데스는 실진법을 사용하여 곡선이나 곡면으로 둘러싸인 도형의 대략적인 넓이와 부피를 구했다. 도형을 같은 두께의 ...2025.01.20
-
적분속도식과 반응속도2025.01.151. 적분속도식 적분속도식은 반응 속도를 나타내는 수학적 표현 방법입니다. 0차, 1차, 2차 반응에 대한 적분 속도식을 도출하는 과정을 설명하고 있습니다. 0차 반응의 경우 농도가 시간에 따라 선형적으로 감소하고, 1차 반응은 지수적으로 감소합니다. 2차 반응은 농도의 제곱에 비례하여 감소합니다. 각 반응 차수에 따른 적분 속도식과 반감기 공식을 정리하고 있습니다. 2. 반응 속도 화학 반응에서 반응 속도는 중요한 개념입니다. 반응 속도는 반응물의 농도 변화율로 정의되며, 0차, 1차, 2차 반응에 따라 다른 수학적 표현식을 가집...2025.01.15