· Wu, J.; Xiao, L.; Shen, L.; Ran, J.-J.; Zhong, H.; Zhu, Y.-R.; Chen, H. Recent Advancements in Hydrometallurgical Recycling Technologies of Spent Lithium-Ion Battery Cathode Materials. Rare metals/Rare Metals 2023, 43 (3), 879–899.
· Celante, V. G.; Freitas, M. B. J. G. Electrodeposition of Copper from Spent Li-Ion Batteries by Electrochemical Quartz Crystal Microbalance and Impedance Spectroscopy Techniques. Journal of Applied Electrochemistry 2009, 40 (2), 233–239.
· Ramaley, Louis.; Krause, M. S. Theory of Square Wave Voltammetry. Analytical Chemistry 1969, 41 (11), 1362–1365.
· Mahmud, S.; Rahman, M.; Kamruzzaman, M.; Ali, M. O.; Emon, M. S. A.; Khatun, H.; Ali, M. R. Recent Advances in Lithium-Ion Battery Materials for Improved Electrochemical Performance: A Review. Results in Engineering 2022, 15, 100472.
· Harris, D. C.; Lucy, C. A. Quantitative Chemical Analysis, 10th ed.; Macmillan Learning: New York, NY, 2020.
· Park, S., Boo, H., & Chung, T. D. (2006). Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556(1), 46-57.
· Yu, S.; Chen, S.; Dang, Y.; Zhou, Y.; Zhu, J.-J. An Ultrasensitive Electrochemical Biosensor Integrated by Nicking Endonuclease-Assisted Primer Exchange Reaction Cascade Amplification and DNA Nanosphere-Mediated Electrochemical Signal-Enhanced System for MicroRNA Detection. Analytical chemistry 2022, 94 (41), 14349–14357.
· Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J.-Y.; Chesneau, F. F.; Aurbach, D. Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of The Electrochemical Society 2016, 164 (1), A6220–A6228.
· Butt, A.; Ali, G.; Tul Kubra, K.; Sharif, R.; Salman, A.; Bashir, M.; Jamil,
· Recent Advances in Enhanced Performance of Ni‐Rich Cathode Materials for Li‐Ion Batteries: A Review. Energy Technology 2022, 10 (3), 2100775
· Chen, S.; Zhang, X.; Xia, M.; Wei, K.; Zhang, L.; Zhang, X.; Cui, Y.; Shu, J. Issues and Challenges of Layered Lithium Nickel Cobalt Manganese Oxides for Lithium-Ion Batteries. Journal of Electroanalytical Chemistry 2021, 895, 115412.
· Lodge, A. W.; Lacey, M. J.; Fitt, M.; Garcia-Araez, N.; Owen, J. R. Critical Appraisal on the Role of Catalysts for the Oxygen Reduction Reaction in Lithium-Oxygen Batteries. Electrochimica Acta 2014, 140, 168–173.
· Krüger, S.; Hanisch, C.; Kwade, A.; Winter, M.; Nowak, S. Effect of Impurities Caused by a Recycling Process on the Electrochemical Performance of Li[Ni0.33Co0.33Mn0.33]O2. Journal of Electroanalytical Chemistry 2014, 726, 91–96.
· Zhang, R.; Zheng, Y.; Vanaphuti, P.; Liu, Y.; Fu, J.; Yao, Z.; Ma, X.; Chen, M.; Yang, Z.; Lin, Y.; Wen, J.; Wang, Y. Valence Effects of Fe Impurity for Recovered LiNi0.6Co0.2Mn0.2O2 Cathode Materials. ACS Applied Energy Materials 2021, 4 (9), 10356–10367.
· Zhang, R., Zheng, Y., Yao, Z., Vanaphuti, P., Ma, X., Bong, S., ... & Wang, Y. Systematic study of Al impurity for NCM622 cathode materials. ACS Sustainable Chemistry & Engineering, 8(26), 2020. 9875-9884.
· Zhang, R.; Meng, Z.; Ma, X.; Chen, M.; Chen, B.; Zheng, Y.; Yao, Z.; Vanaphuti, P.; Bong, S.; Yang, Z.; Wang, Y. Understanding Fundamental Effects of Cu Impurity in Different Forms for Recovered LiNi0.6Co0.2Mn0.2O2 Cathode Materials. Nano Energy 2020, 78, 105214.