• AI글쓰기 2.1 업데이트
BRONZE
BRONZE 등급의 판매자 자료

DQN과 A2C network를 활용한 CartPole 강화학습 훈련과정 및 code

DQN과 A2C network를 사용하여 Cartpole을 강화학습으로 훈련하는 과정과 코드가 담겨있는 레포트입니다.
16 페이지
어도비 PDF
최초등록일 2024.04.06 최종저작일 2021.05
16P 미리보기
DQN과 A2C network를 활용한 CartPole 강화학습 훈련과정 및 code
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 명확성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🤖 강화학습의 DQN과 A2C 알고리즘을 실제 CartPole 환경에서 상세히 설명
    • 💡 알고리즘의 이론적 배경과 구현 과정을 명확하게 제시
    • 📊 각 알고리즘의 학습 결과와 성능 변화를 시각적으로 보여줌

    미리보기

    소개

    DQN과 A2C network를 사용하여 Cartpole을 강화학습으로 훈련하는 과정과 코드가 담겨있는 레포트입니다.

    목차

    01 Cartpole environment
    02 DQN algorithm & code
    03 A2C algorithm & code

    본문내용

    OpenAI gym의 CartPole은 카트 위에 막대기가 고정되어 있고 막대기는 중력에 의해 바닥을 향해 자연적으로 기울게 되는 환경을 제공한다. CartPole의 목적은 카트를 좌, 우로 움직이며 막대기가 기울지 않고 서 있을 수 있도록 유지시켜 주는 것이 목적인데, 강화 학습 알고리즘을 이용하여 막대기를 세울 수 있는 방법을 소프트웨어 에이전트가 스스로 학습할 수 있도록 한다. 다음은 CartPole 환경에서 사용되는 observation, action, reward, episode의 시작과 종료에 대한 설명이다.
    Observation: cart의 현재 위치, cart의 속도, pole의 기울기, pole의 속도를 의미한다. Action: 오른쪽(1) 또는 왼쪽(0) reward: 매 타임스텝마다 +1씩 보상을 받는다. Episode Termination: 막대가 중심에서 2.4deg이상 기울어지거나, 멀리 떨어지면 종료된다.
    step function을 통해 랜덤한 움직임에 대한 action을 한번 수행하고, action이 실행된 이후의 상태(observation)와, 보상(reward), 막대가 쓰러졌는지의 여부(done) 등의 정보가 반환된다.
    Code:
    코드는 제가 직접 작성한 것이 아님을 밝힙니다. 산업정보시스템전공 딥러닝 수업을 듣고 프로젝트도 수행했던터라 딥러닝과 강화학습을 조합한 알고리즘에 자연스럽게 관심이 생겼습니다. 따라서 실제 구현된 DQN network와 A2C(Advantage Actor-Critic) network의 코드를 실행시키고 분석했습니다.

    참고자료

    · 없음
  • AI와 토픽 톺아보기

    • 1. CartPole environment
      The CartPole environment is a classic reinforcement learning problem that involves balancing an inverted pendulum on a moving cart. It is a widely used benchmark for evaluating the performance of reinforcement learning algorithms due to its simplicity and the ease of implementation. The environment provides a continuous state space and a discrete action space, making it suitable for testing various RL algorithms. The goal is to learn a policy that can keep the pendulum balanced for as long as possible by applying the appropriate force to the cart. The CartPole environment is a great starting point for beginners to explore reinforcement learning concepts and experiment with different algorithms, as it offers a straightforward setup and clear performance metrics. It serves as a valuable tool for understanding the fundamental principles of RL and provides a solid foundation for further exploration in more complex environments.
    • 2. DQN algorithm
      The Deep Q-Network (DQN) algorithm is a groundbreaking reinforcement learning technique that combines the power of deep neural networks with the principles of Q-learning. DQN has revolutionized the field of RL by demonstrating the ability to learn complex control policies directly from high-dimensional sensory inputs, such as raw pixel data from video games. The key innovations of DQN include the use of a deep neural network as the Q-function approximator, the introduction of a target network to stabilize the training process, and the incorporation of experience replay to break the correlation between consecutive samples. These advancements have enabled DQN to achieve superhuman performance on a wide range of Atari games, showcasing its ability to learn effective strategies from raw visual inputs. The success of DQN has inspired further research and development in deep reinforcement learning, leading to the emergence of various extensions and improvements, such as Double DQN, Dueling DQN, and Prioritized Experience Replay. DQN's impact on the field of RL is undeniable, as it has paved the way for more advanced and capable agents that can tackle complex real-world problems.
    • 3. DQN code
      The implementation of the Deep Q-Network (DQN) algorithm involves a well-structured and modular codebase that encompasses the key components of the algorithm. The typical DQN code structure includes the following main elements: 1. Environment Interaction: Code that handles the interaction with the environment, such as stepping through the environment, observing the current state, and taking actions. 2. Neural Network Model: The definition of the deep neural network that serves as the Q-function approximator. This includes the network architecture, hyperparameters, and the necessary layers and activation functions. 3. Experience Replay Buffer: Code that manages the experience replay buffer, which stores the agent's experiences (state, action, reward, next state) for efficient training. 4. Training Loop: The main training loop that iterates through the learning process, including sampling from the experience replay buffer, computing the target Q-values, updating the network weights, and updating the target network. 5. Evaluation: Code for evaluating the agent's performance, such as running episodes in the environment and tracking the cumulative rewards or other relevant metrics. 6. Utility Functions: Auxiliary functions that support the main components, such as preprocessing the input data, computing the loss function, and managing the training process. The DQN code should be well-documented, modular, and easy to understand, allowing for easy extensibility and integration with other RL techniques. Additionally, the code should be optimized for efficient computation, leveraging techniques like GPU acceleration and parallelization where applicable. A well-designed DQN codebase can serve as a foundation for further research and development in deep reinforcement learning, enabling researchers and practitioners to explore and experiment with various modifications and extensions of the algorithm.
    • 4. A2C (Advantage Actor-Critic)
      A2C (Advantage Actor-Critic) is a powerful reinforcement learning algorithm that combines the strengths of the actor-critic and advantage-based methods. It is an on-policy algorithm that learns both a policy (the actor) and a value function (the critic) simultaneously, allowing it to efficiently explore the environment and learn effective control policies. The key features of A2C include: 1. Actor-Critic Architecture: A2C consists of two neural networks - the actor network, which learns the policy, and the critic network, which learns the value function. The actor and critic networks work together to optimize the agent's behavior. 2. Advantage Function: A2C uses the advantage function, which measures the difference between the expected return and the current state value, to guide the policy updates. This helps the agent focus on actions that lead to higher rewards. 3. Synchronous Updates: A2C performs synchronous updates, where the actor and critic networks are updated in parallel, ensuring that the policy and value function are consistently learned. 4. Exploration-Exploitation Balance: A2C balances exploration and exploitation by using a combination of stochastic policy updates and value function estimates, allowing the agent to explore the environment while still exploiting the learned knowledge. The A2C algorithm has been successfully applied to a wide range of reinforcement learning problems, including continuous control tasks, robotics, and game-playing scenarios. It has shown strong performance compared to other on-policy algorithms, such as REINFORCE and A3C, and is often used as a baseline for evaluating more advanced RL techniques. The implementation of A2C involves the careful design and integration of the actor and critic networks, the advantage function computation, and the synchronous update process. A well-designed A2C codebase should be modular, efficient, and easy to extend, allowing researchers and practitioners to experiment with various modifications and extensions of the algorithm.
    • 5. A2C code
      The implementation of the Advantage Actor-Critic (A2C) algorithm involves a structured and modular codebase that encompasses the key components of the algorithm. The typical A2C code structure includes the following main elements: 1. Environment Interaction: Code that handles the interaction with the environment, such as stepping through the environment, observing the current state, and taking actions. 2. Actor-Critic Networks: The definition of the neural network architectures for the actor (policy) and the critic (value function). This includes the network structures, hyperparameters, and the necessary layers and activation functions. 3. Advantage Computation: Code that computes the advantage function, which measures the difference between the expected return and the current state value. This is a crucial component of the A2C algorithm. 4. Training Loop: The main training loop that iterates through the learning process, including sampling from the environment, computing the advantage, updating the actor and critic networks, and managing the training process. 5. Evaluation: Code for evaluating the agent's performance, such as running episodes in the environment and tracking the cumulative rewards or other relevant metrics. 6. Utility Functions: Auxiliary functions that support the main components, such as preprocessing the input data, managing the training process, and logging the results. The A2C code should be well-documented, modular, and easy to understand, allowing for easy extensibility and integration with other RL techniques. Additionally, the code should be optimized for efficient computation, leveraging techniques like GPU acceleration and parallelization where applicable. A well-designed A2C codebase can serve as a foundation for further research and development in reinforcement learning, enabling researchers and practitioners to explore and experiment with various modifications and extensions of the algorithm, such as incorporating different network architectures, exploration strategies, or reward shaping techniques.
    • 6. A2C results
      The Advantage Actor-Critic (A2C) algorithm has demonstrated promising results in various reinforcement learning domains. Some of the key findings and results of A2C include: 1. Stable and Consistent Performance: A2C has shown stable and consistent performance across a range of benchmark tasks, including classic control problems, continuous control tasks, and complex game environments. The on-policy nature of A2C and its use of the advantage function have contributed to its robust and reliable performance. 2. Sample Efficiency: Compared to off-policy algorithms like DQN, A2C has shown better sample efficiency, requiring fewer interactions with the environment to learn effective policies. This makes A2C a suitable choice for applications where sample efficiency is a critical factor. 3. Continuous Control Tasks: A2C has been successfully applied to continuous control problems, such as robotic manipulation and locomotion tasks, where it has demonstrated the ability to learn complex control policies directly from high-dimensional sensory inputs. 4. Scalability and Parallelization: The synchronous updates and the modular structure of A2C make it amenable to parallelization, allowing it to scale to larger and more complex environments. This has enabled the application of A2C to challenging multi-agent and distributed control problems. 5. Interpretability and Explainability: The actor-critic architecture of A2C provides a level of interpretability, as the separate policy and value function networks can offer insights into the agent's decision-making process and the underlying value estimates. 6. Limitations and Extensions: While A2C has shown strong performance, it also has some limitations, such as its sensitivity to hyperparameter tuning and its potential for instability in certain environments. This has led to the development of various extensions and improvements, such as Proximal Policy Optimization (PPO) and Distributed Proximal Policy Optimization (DPPO), which aim to address these limitations and further enhance the capabilities of on-policy actor-critic algorithms. The results of A2C have contributed to the advancement of reinforcement learning, demonstrating the effectiveness of the actor-critic approach and the advantage-based learning paradigm. A2C has become a widely used baseline and a starting point for further research and development in the field of deep reinforcement learning.
  • 자료후기

      Ai 리뷰
      OpenAI Gym의 CartPole-v0 환경에서 DQN 및 A2C 알고리즘을 구현하고 성능을 평가한 내용입니다. 강화 학습 알고리즘의 원리와 구현 과정, 실험 결과를 자세히 설명하고 있습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    • 전문가요청 배너
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 12월 01일 월요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    9:28 오전