• AI글쓰기 2.1 업데이트
GOLD
GOLD 등급의 판매자 자료

12주차_protein expression

"12주차_protein expression"에 대한 내용입니다.
6 페이지
어도비 PDF
최초등록일 2023.08.31 최종저작일 2023.05
6P 미리보기
12주차_protein expression
  • 미리보기

    목차

    I. Purpose

    II. Theory
    1. Expression vector (pET vector)
    2. Operon (lac operon)
    3. Inducer (IPTG)
    4. Optical density (OD600)
    5. Bacterial growth curve
    6. Green Fluorescent Protein (GFP)

    III. Apparatus/reagent

    IV. Procedure
    1. Pre-culture (실험수업 전날)
    2. Culture
    3. Pellet 만들기

    V. Data&Results

    VI. Discussion

    본문내용

    Purpose: pET 발현 시스템을 이해하고, 이를 이용하여 형광단백질을 발현해 본다.

    Theory
    1. Expression vector (pET vector)
    pET vector는 E. coli에서 recombinant protein을 발현하기 위해서 사용되는 expression vector이 다. expression vector는 molecular cloning 과정을 통해서 얻은 recombinant DNA를 competent cell과 같은 다른 세포로 운반할 때 사용된다. pET의 경우 plasmid에 해당하지만, 이외에도 viral vector, artificial chromosome 등이 존재한다. vector로 사용되기 위해서는 세포 내에서 자 가 복제가 가능해야 한다. 그리고, cloning 시 restriction enzyme에 의한 digestion 과정을 거 치므로 restriction enzyme에 의해 인식될 수 있는 sequence가 존재해야 한다. 마지막으로, selective marker가 존재할 때 cell-selection이 용이하므로 selective marker로 사용될 수 있는 성질이 있는 것이 좋다. expression vector는 새로 도입된 cell이 갖는 gene expression system 에서도 작동할 수 있도록 promoter, multi cloning site; MCS, 전사 종결부위 등이 개조되어 있 다. 또한 효율적이고 정확한 발현이 가능하도록 적절한 promoter가 존재해야 한다. promoter 에 따라서 전사가 조절될 수 있으며, 실험에서 사용하는 pET-16b vector에는 T7 promoter가 존재해서 T7 RNA polymerase에 의해 selective하게 발현된다.

    2. Operon (lac operon)
    Operon은 protein의 구조에 대한 정보를 가진..

    <중 략>

    참고자료

    · Jeremy M.Berg, Biochemistry, 8th, W. H. Freeman, 2015, pp1230~1246
  • AI와 토픽 톺아보기

    • 1. Expression vector (pET vector)
      Expression vectors, such as the pET vector system, are widely used in recombinant protein production due to their ability to efficiently express target proteins in bacterial hosts like E. coli. The pET vector utilizes a strong T7 promoter and a lac operator to tightly control the expression of the target gene, allowing for high-level protein production upon induction. The versatility of the pET system, with various antibiotic resistance markers and multiple cloning sites, makes it a popular choice for researchers working on a diverse range of proteins. The ability to optimize expression conditions, such as inducer concentration and temperature, further enhances the utility of pET vectors in obtaining high yields of the desired recombinant protein. Overall, the pET expression system has become an invaluable tool in the field of molecular biology and biotechnology, enabling researchers to study and produce a wide array of proteins for various applications.
    • 2. Operon (lac operon)
      The lac operon is a classic example of a gene regulatory system in bacteria, specifically in E. coli, that controls the expression of genes involved in lactose metabolism. The lac operon consists of three structural genes (lacZ, lacY, and lacA) and a regulatory region (the lac promoter and the lac operator). When lactose is present, it binds to the lac repressor, causing it to dissociate from the operator, allowing the transcription of the structural genes. This mechanism enables the bacteria to efficiently utilize lactose as a carbon source. The lac operon serves as a model for understanding gene regulation and has been extensively studied, providing insights into the complex interplay between transcriptional control, induction, and repression in bacterial systems. The understanding of the lac operon has also contributed to the development of various genetic engineering techniques, such as the use of the lac promoter for the controlled expression of recombinant proteins. The lac operon remains a fundamental concept in molecular biology and microbiology, highlighting the elegance and efficiency of gene regulation in prokaryotes.
    • 3. Inducer (IPTG)
      IPTG (Isopropyl β-D-1-thiogalactopyranoside) is a widely used inducer in recombinant protein expression systems, particularly in the context of the lac operon. IPTG is a synthetic analog of lactose that can bind to the lac repressor, causing it to dissociate from the lac operator and allowing the transcription of the target gene. Unlike lactose, IPTG is not metabolized by the cell, making it an effective and controllable inducer. The use of IPTG in expression systems, such as the pET vector system, enables researchers to precisely control the timing and level of protein expression, which is crucial for the production of recombinant proteins. IPTG-based induction allows for the optimization of protein yields, as well as the study of protein function and regulation. The versatility and reliability of IPTG as an inducer have made it an indispensable tool in molecular biology and biotechnology, enabling researchers to explore a wide range of protein-related applications, from basic research to industrial-scale protein production.
    • 4. Optical density (OD600)
      Optical density (OD) measurement, particularly at a wavelength of 600 nm (OD600), is a widely used technique in microbiology and biotechnology to monitor the growth and density of bacterial cultures. The OD600 value provides a quantitative estimate of the cell density in a liquid culture, as it is directly proportional to the number of cells present. This measurement is crucial for various applications, such as determining the optimal time for induction in recombinant protein expression, monitoring the progress of bacterial fermentation, and evaluating the growth kinetics of different bacterial strains. The simplicity and non-invasive nature of OD600 measurements make them a valuable tool for researchers and industry professionals working with bacterial systems. By tracking the OD600 over time, researchers can gain insights into the growth patterns, cell density, and overall health of their bacterial cultures, which is essential for optimizing experimental conditions, scaling up production, and ensuring the consistency and reproducibility of their experiments. The widespread use of OD600 as a standard metric in microbiology and biotechnology highlights its importance as a reliable and informative method for monitoring and understanding bacterial growth and behavior.
    • 5. Bacterial growth curve
      The bacterial growth curve is a fundamental concept in microbiology that describes the changes in the population size of a bacterial culture over time. This curve typically consists of four distinct phases: the lag phase, the exponential (log) phase, the stationary phase, and the death phase. Understanding the bacterial growth curve is crucial for various applications, such as optimizing culture conditions, monitoring the progress of fermentation processes, and determining the appropriate timing for experimental interventions, such as the induction of recombinant protein expression. By analyzing the growth curve, researchers can gain insights into the physiological state of the bacterial cells, their nutrient requirements, and the factors that influence their growth and survival. Additionally, the growth curve can be used to calculate important parameters, such as the doubling time, growth rate, and maximum cell density, which are essential for process optimization and scale-up in biotechnology and industrial microbiology. The bacterial growth curve remains a fundamental concept that underpins our understanding of microbial behavior and is a valuable tool for researchers and practitioners working with bacterial systems.
    • 6. Green Fluorescent Protein (GFP)
      Green Fluorescent Protein (GFP) is a remarkable and widely used tool in molecular biology and cell biology. Derived from the jellyfish Aequorea victoria, GFP has the unique ability to emit green fluorescence when exposed to blue or ultraviolet light. The discovery and subsequent engineering of GFP have revolutionized the way researchers study and visualize cellular processes, gene expression, and protein localization. GFP can be fused to target proteins, allowing researchers to track their expression, trafficking, and interactions within living cells. This powerful technique has enabled unprecedented insights into the dynamic nature of cellular processes, from protein folding and trafficking to signaling pathways and organelle dynamics. Moreover, the development of variants of GFP, such as different color-emitting versions and improved folding properties, has further expanded the versatility of this fluorescent reporter. The widespread use of GFP in fields ranging from cell biology and developmental biology to neuroscience and biotechnology underscores its transformative impact on scientific research. GFP has become an indispensable tool, allowing researchers to observe and understand the complex inner workings of cells with unprecedented clarity and precision.
  • 자료후기

      Ai 리뷰
      생화학실험 수업의 12주차 내용을 잘 정리한 문서입니다. pET 발현 시스템의 원리와 활용, 형광단백질 발현 실험의 과정과 결과 분석이 상세히 기술되어 있습니다.
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
        자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
        저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    찾으시던 자료가 아닌가요?

    지금 보는 자료와 연관되어 있어요!
    왼쪽 화살표
    오른쪽 화살표
    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2025년 12월 28일 일요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    2:09 오전