BRONZE
BRONZE 등급의 판매자 자료

[수학교육] 수학교육론 2

수학교육론 1 다음 2입니다
66 페이지
한컴오피스
최초등록일 2002.11.21 최종저작일 2002.11
66P 미리보기
[수학교육] 수학교육론 2
  • 미리보기

    소개

    수학교육론 1 다음 2입니다

    목차

    제 6장. 수학교육과 수리철학
    제 1절. 절대주의 수리철학
    가. 플라톤주의
    나. 논리주의, 직관주의, 형식주의
    제 2절. 준경험주의
    제 3절. 구성주의
    가. 조작적 구성주의
    나. 급진적 구성주의
    다. 사회적 구성주의
    ♠ 탐구·논의
    제 7장. 수학학습 심리학
    제 1절. 피아제의 수학학습 심리학
    1. 인지 발달 단계 이론
    가. 감각운동기
    나. 전조작기
    다. 구체적 조작기
    라. 형식적 조작기
    2. 반영적 추상화
    3. 수학교육에 주는 시사점
    제 2절. 브루너의 수학학습 심리학
    1. 지식의 구조
    2. EIS 이론
    제 3절. 스켐프의 수학학습 심리학
    1. 관계적 이해와 도구적 이해
    2. 지능 모델
    제 4절. 딘즈의 수학학습 심리학
    1. 놀이를 통한 학습
    2. 수학 학습 원리
    ♠ 탐구·논의
    제 8장 수학 문제해결 교육론
    제 1절. 문제와 문제해결
    1. 문제와 문제 해결의 의미
    2. 문제의 유형
    3. 문제해결 행동 관련 요인
    제 2절. 문제해결 지도의 역사
    제 3절. 폴리아의 문제해결 교육론
    1. 수학적 발견술
    2. 문제 해결의 단계
    제 4절. 문제해결 전략
    ▶ 예상과 확인
    ▶ 표 만들기
    ▶ 그림 그리기
    ▶ 식 세우기
    ▶ 규칙성 찾기
    ▶ 거꾸로 풀기
    ▶ 단순화하기
    ▶ 특수화하기
    ▶ 유추하기
    ▶ 목록 만들기
    ▶ 간접 증명법
    ♠ 탐구·논의
    제 9장. 수학화 교수-학습론
    제 1절. 수학화의 의미
    제 2절. 수학화 활동 경험의 중요성
    제 3절. 수학화 교수-학습의 원리
    1. 안내된 재발명
    2. 반성적 사고
    3. 현실(rerality)과 결부된 수학
    제 4절. 수학화 교수-학습의 예: 기하 지도
    ♠ 탐구·논의
    제 10장. 수학 학습 수준 이론
    제 1절. 반 힐레의 기하 학습 수준 이론
    제 1 수준: 시각적 인식 수준
    제 2 수준: 기술적/분석적 인식 수준
    제 3 수준: 관계적/추상적 인식 수준
    제 4 수준: 형식적 연역 수준
    제 5 수준: 엄밀한 수학적 수준
    제 2절. 반 힐레의 기하 학습 수준 이론의 특징
    제 3절. 반 힐레의 교수-학습 단계
    1단계: 질의/안내 단계
    2단계: 안내된 탐구 단계
    3단계: 발전/명료화 단계
    4단계: 자유 탐구 단계
    5단계: 통합 단계
    제 4절. 반 힐레의 교수-학습 이론
    ♠ 탐구·논의

    본문내용

    제 6장. 수학교육과 수리철학
    제 1절. 절대주의 수리철학

    전통적으로 수학은 확실한 지식의 전형으로 여겨져 왔다. 기원전에 쓰여진 유클리드의 원론은 19세기 말까지 진리와 확실성을 보여주는 전형적인 체계로 생각되어 왔다. 절대주의 수리철학은 수학적 지식은 절대적으로 확실한 진리라고 보는 관점이다. 절대주의 수리철학의 주요한 관심사는 수학적 진리의 안전한 기초를 확립하는 것이다. 플라톤주의나 20세기 초반의 수학기초론 학파들은 공통적으로 이러한 기초를 찾는 데 관심을 가지고 있었다. 연역적 양식은 절대주의적 관점과 깊은 관련을 가지고 있다. 정의, 공리, 공준과 같은 기초가 되는 명제의 진리성은 연역적 방법에 의해 정리로 전달된다. 연역적 양식은 진리를 확립하는 방법적 수단으로 절대주의 수리철학에서 중요하게 취급된다.
    이제 절대주의 수리철학을 고전적인 수리철학인 플라톤주의와 20세기 초반의 논리주의, 직관주의, 형식주의 수학기초론 학파를 중심으로 좀 더 자세히 살펴보자.

    참고자료

    · 강문봉(1993). Lakatos의 수리철학의 교육적 연구. 서울대학교 대학원 박사학위논문.
    · 박영배(1996). 수학 교수 학습의 구성주의적 전개에 관한 연구. 서울대학교 대학원 박사학위논문.
    · 유연주(1999). 사회적 구성주의 수학교육론 연구. 서울대학교 대학원 석사학위논문.
    · 임재훈(1998). 플라톤의 수학교육철학 연구. 서울대학교 대학원 석사학위논문.
    · Ernest, P.(1991). The philosophy of Mathematics Education. London : The Falmer Press.
    · Lakatos, I.(1976). Proofs and Refutations ― The Logic of Mathematical Discovery. Cambridge Univ. Press. 우정호(譯)(1991). [수학적 발견의 논리]. 제2판. 대우학술총서 번역 37. 서울: 민음사.
  • 자료후기

    Ai 리뷰
    지식판매자의 자료는 항상 기대 이상의 정보를 제공합니다. 특히 학업에도 활용할 수 있어 매우 만족스럽습니다. 여러분께도 추천합니다!
    왼쪽 화살표
    오른쪽 화살표
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

함께 구매한 자료도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 16일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:11 오전