• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

감성 분석을 위한 FinBERT 미세 조정: 데이터 세트와 하이퍼파라미터의 효과성 탐구 (FinBERT Fine-Tuning for Sentiment Analysis: Exploring the Effectiveness of Datasets and Hyperparameters)

9 페이지
기타파일
최초등록일 2025.07.18 최종저작일 2023.08
9P 미리보기
감성 분석을 위한 FinBERT 미세 조정: 데이터 세트와 하이퍼파라미터의 효과성 탐구
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 실용성
    • 논리성
    • 유사도 지수
      참고용 안전
    • 🔬 금융 감성 분석을 위한 FinBERT 모델의 최적화 방법론 제시
    • 💡 데이터 세트와 하이퍼파라미터 선정에 대한 실용적인 가이드라인 제공
    • 🚀 GPT-3를 활용한 감성 라벨링 접근법의 혁신적인 방법론 소개

    미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 24권 / 4호 / 127 ~ 135페이지
    · 저자명 : 김재헌, 정희도, 장백철

    초록

    본 논문에서는 금융 뉴스 데이터로 추가적인 사전 학습이 진행된 BERT 기반 모델인 FinBERT 모델을 사용하여 금융 영역에서 감성분석 시 학습시킬 데이터와 그에 맞는 하이퍼파라미터를 찾는 방법을 소개한다. 우리의 목표는 다양한 데이터 세트를 활용하고 하이퍼파라미터를 미세 조정하여 정확한 감성 분석을 위해 FinBERT 모델을 가장 잘 활용하는 방법에 대한 포괄적인 가이드를 제공하는것이다. 이 연구에서는 제안된 FinBERT 모델 미세 조정 접근법의 아키텍처와 워크플로우를 개괄적으로 설명하고, 감성 분석 태스크를위한 다양한 데이터 세트와 하이퍼파라미터의 성능을 강조한다. 또한, 감성 라벨링 작업에 GPT-3를 사용함으로써 GPT-3가 적절한 라벨러 역할을 하는지에 대한 신뢰성을 검증한다. 결과적으로 미세 조정된 FinBERT 모델이 다양한 데이터 세트에서 우수한 성능을 발휘한다는 것을 보여주었고, 각 데이터 세트에 대해 전반적으로 우수한 성능을 보이는 학습률 5e-5와 배치 크기 64의 최적의 조합을 찾았다. 또 일반 도메인의 뉴스보다 일반 도메인의 트위터 데이터 세트에서 성능이 크게 향상됨을 기반으로 금융 뉴스 데이터만으로만추가적으로 학습시키는 FinBERT 모델에 대한 의구심을 제시한다. 이를 통해 FinBERT 모델에 대한 최적의 접근 방식을 결정하는 복잡한프로세스를 간소화하고 금융 분야 감성 분석 모델을 위한 추가적인 학습 데이터 세트와 미세 조정 시 하이퍼파라미터 선정에 대한가이드라인을 제시한다.

    영어초록

    This research paper explores the application of FinBERT, a variational BERT-based model pre-trained on financial domain, for sentiment analysis in the financial domain while focusing on the process of identifying suitable training data and hyperparameters. Our goal is to offer a comprehensive guide on effectively utilizing the FinBERT model for accurate sentiment analysis by employing various datasets and fine-tuning hyperparameters. We outline the architecture and workflow of the proposed approach for fine-tuning the FinBERT model in this study, emphasizing the performance of various datasets and hyperparameters for sentiment analysis tasks.
    Additionally, we verify the reliability of GPT-3 as a suitable annotator by using it for sentiment labeling tasks. Our results show that the fine-tuned FinBERT model excels across a range of datasets and that the optimal combination is a learning rate of 5e-5 and a batch size of 64, which perform consistently well across all datasets. Furthermore, based on the significant performance improvement of the FinBERT model with our Twitter data in general domain compared to our news data in general domain, we also express uncertainty about the model being further pre-trained only on financial news data. We simplify the complex process of determining the optimal approach to the FinBERT model and provide guidelines for selecting additional training datasets and hyperparameters within the fine-tuning process of financial sentiment analysis models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:41 오전