• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

미디어 레퍼토리를 이용한 스마트폰 애플리케이션 이용 패턴 유형 분석 (Mobile App Analytics using Media Repertoire Approach)

22 페이지
기타파일
최초등록일 2025.07.17 최종저작일 2021.11
22P 미리보기
미디어 레퍼토리를 이용한 스마트폰 애플리케이션 이용 패턴 유형 분석
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 논리성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 모바일 미디어 이용 행동의 심층적인 학술적 분석 제공
    • 💡 혁신적인 군집 분석 방법론(SOM + k-means) 소개
    • 📊 실무적 활용 가능한 고객 행동 유형 분류 연구

    미리보기

    서지정보

    · 발행기관 : 한국전자거래학회
    · 수록지 정보 : 한국전자거래학회지 / 26권 / 4호 / 133 ~ 154페이지
    · 저자명 : 권성은, 장서인, 황보현우

    초록

    현대인에게 가장 보편적이고 융합적인 미디어인 스마트 폰은 애플리케이션이라는 비히클을 갖는 뉴미디어이다. 이 연구는 미디어 사용자들은 어떻게 레퍼토리를 구성하여 미디어를 이용하고 있는지를 파악하고자 2019년 11월, 4주 동안의 개인별 모바일 이용행동 로그 데이터를 이용하여 모바일 애플리케이션 카테고리별 미디어 이용량을 중심으로 군집 분석을 실시하고, 최종적으로 8개의 모바일 미디어 레퍼토리 유형별 집단을 분류하였다. 8개의 각 미디어 레퍼토리 그룹은 애플리케이션 카테고리별 절대적 이용량과 타 그룹 대비 상대적 이용량에서 차이를 보였으며, 데모그라픽적 분포에서도 집단간 차이를 보였다. 이 연구는 모바일 미디어 레퍼토리를 규명해 냈다는 학문적 기여뿐만 아니라 기존의 k-means clustering에 의존적이었던 군집 분석을 SOM(Sefl-Organized Map)을 이용하여 프로토벡터를 추출하고 이 프로토벡터를 이용하여 k-means clustering을 실시하는 이단계 접근법(two-step approach)을 시도함으로써, 기존 k-means clustering이 갖고 있는 ‘이상치(outlier)’나 ‘결측치’에 민감했던 한계점을 극복하고 더 나은 성능의 분석 결과를 도출하고 있음을 보여준다는 점에서 방법론적으로도 의미를 갖는다. 또한 모바일 미디어 이용 행동의 유형 분류 연구는 전자거래 서비스를 이용하는 고객을 유형분류하고, 각 고객 유형에 맞는 고객 관리 서비스를 집행해야 하는 실무진이 고객 행동 로그 데이터를 기반으로 고객의 구조를 파악하고 각 고객 집단에 적합한 서비스 또는 마케팅 의사결정을 차별적으로 집행해야 하는 전자거래 커뮤니티에 실무적 가이드를 제공한다는 점에서도 의미를 갖고 있다.

    영어초록

    Today smart phone is the most common media with a vehicle called ‘application’. In order to understand how media users select applications and build their repertoire, this study conducted two-step approach using big data from smart phone log for 4 weeks in November 2019, and finally classified 8 media repertoire groups. Each of the eight media repertoire groups showed differences in time spent of mobile application category compared to other groups, and also showed differences between groups in demographic distribution. In addition to the academic contribution of identifying the mobile application repertoire with large scale behavioral data, this study also has significance in proposing a two-step approach that overcomes ‘outlier issue’ in behavioral data by extracting prototype vectors using SOM(Sefl-Organized Map) and applying it to k-means clustering for optimization of the classification. The study is also meaningful in that it categorizes customers using e-commerce services, identifies customer structure based on behavioral data, and provides practical guides to e-commerce communities that execute appropriate services or marketing decisions for each customer group.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자거래학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 02일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:41 오전