PARTNER
검증된 파트너 제휴사 자료

랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점 (Automatic scoring of mathematics descriptive assessment using random forest algorithm)

22 페이지
기타파일
최초등록일 2025.07.17 최종저작일 2024.05
22P 미리보기
랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점
  • 미리보기

    서지정보

    · 발행기관 : 한국수학교육학회
    · 수록지 정보 : 수학교육 / 63권 / 2호 / 165 ~ 186페이지
    · 저자명 : 최인용, 김화경, 정인우, 송민호

    초록

    학교 현장과 대규모 평가에서 서술형 문항 도입을 지원하기 위한 방안 중 하나로 인공지능 기반의 자동 채점 기술이 주목받고 있음에도 불구하고, 수학 교과에서는 타 교과에 비해 이에 대한 기초 연구가 부족한 상황이다. 이에 본 연구는 중학교 1 학년 수학 서술형 문항 두 개를 대상으로 랜덤 포레스트 알고리즘을 활용하여 자동 채점 모델을 개발하고 그 성능을 평가하였다. 연구 결과, 두 문항에 대한 최종 모델의 평가요소별 정확도는 각각 0.95–1.00, 0.73–0.89의 범위로 나타났으며, 이는 타 교과에 비해 상대적으로 높은 수준이다. 데이터의 양을 고려한 평가 범주 설정의 중요성을 확인하였으며, 수학 교육전문가에 의한 텍스트 전처리와 데이터 특성에 맞는 벡터화 방법의 선택이 모델의 성능 및 해석 가능성을 향상시키는 데 기여하였다. 또한, 현실적 한계로 인해 균형적인 데이터 수집이 어려운 상황에서 오버샘플링이 성능을 보완하는 유용한 방법임을 확인하였다. 교육적 활용도를 높이기 위해, 랜덤 포레스트 기반 모델에서 도출된 특성 중요도를 활용하여 피드백과 같이 교수-학습에 유용한 정보를 생성하는 추가 연구가 필요하다. 본 연구는 수학 서술형 자동 채점에 관한 기초 연구로서 의미가 있으며, 인공지능 전문가와 수학교육 전문가 간의 긴밀한 협력을 통해 다양한 후속 연구가 진행될 필요가 있다.

    영어초록

    Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“수학교육”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:06 오전