• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

뉴턴 최적화를 통해 개선된 아다부스트 훈련과 MCT 특징을 이용한 번호판 검출 (License Plate Detection with Improved Adaboost Learning based on Newton’s Optimization and MCT)

12 페이지
기타파일
최초등록일 2025.07.16 최종저작일 2012.12
12P 미리보기
뉴턴 최적화를 통해 개선된 아다부스트 훈련과 MCT 특징을 이용한 번호판 검출
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 첨단 컴퓨터 비전 기술의 혁신적인 번호판 검출 알고리즘 제시
    • 💡 MCT 특징과 뉴턴 최적화를 결합한 독창적인 접근법
    • 🚗 실제 필드 테스트를 통한 실용적인 성능 검증

    미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 17권 / 12호 / 71 ~ 82페이지
    · 저자명 : 이영현, 김대훈, 고한석

    초록

    본 논문에서는 MCT(Modified Census Transform) 특징과 개선된 아다부스트 분류기를 이용한 번호판 검출알고리즘을 제안한다. MCT 특징은 영상의 국소 지역 패턴을 정수화하여 표현하는 특징으로서 조명 변화에 강인하고 메모리 효율이 높은 장점이 있다. 그러나 패턴을 표현하는 정수형의 MCT 특징값들이 이산적인 특징을 가지기때문에 아다부스트 훈련 방법을 적용하기 위해서는 룩업테이블 (Lookup Table)을 이용하여 분류기를 설계해야한다. 그동안의 아다부스트 훈련 방법에 대한 최적화 연구는 지수 기준(exponential criterion)을 최소화 하는 방법에 대한 방향으로 연구가 진행되고 있다. 본 논문에서는 MCT 특징을 이용하고 지수 기준의 뉴턴 최적화를 통해아다부스트 훈련방법을개선하여 번호판 검출성능을향상 시키는 방법을 제안한다. 번호판샘플 영상과 필드 테스트영상에대한 실험을 통해 제안한 방법의 성능을 고찰하고, 기존의 일반 아다부스트훈련을이용한검출 방법과의비교 실험을 통해 그 효용성을 입증한다.

    영어초록

    In this paper, we propose a license plate detection method with improved Adaboost learning and MCT (Modified Census Transform). The MCT represents the local structure patterns as integer numbered feature values which has robustness to illumination change and memory efficiency.
    However, since these integer values are discrete, a lookup table is needed to design a weak classifier for Adaboost learning. Some previous research efforts have focused on minimization of exponential criterion for Adaboost optimization. In this paper, a method that uses MCT and improved Adaboost learning based on Newton’s optimization to exponential criterion is proposed for license plate detection. Experimental results on license patch images and field images demonstrate that the proposed method yields higher performance of detection rates with low false positives than the conventional method using the original Adaboost learning.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:24 오전