• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법 (A Bottom up Filtering Tuple Selection Method for Continuous Skyline Query Processing in Sensor Networks)

12 페이지
기타파일
최초등록일 2025.07.15 최종저작일 2009.08
12P 미리보기
센서 네트워크에서 연속 스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 실용성
    • 논리성
    • 유사도 지수
      참고용 안전
    • 🔬 센서 네트워크의 에너지 효율성 최적화 방법론 제시
    • 💡 연속 스카이라인 질의 처리를 위한 혁신적인 필터링 기법 소개
    • 📊 데이터 통신량 감소를 위한 실용적인 접근 방식 제안

    미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 데이타베이스 / 36권 / 4호 / 280 ~ 291페이지
    · 저자명 : 선진호, 정진완

    초록

    스카이라인 질의 처리는 센서 네트워크 응용에서 다차원 데이터를 효과적으로 활용할 수 있어서 그 역할이 중요하다. 센서 네트워크는 배터리 제약 사항을 가지고 있기 때문에, 센서 네트워크에서의 스카이라인에 관한 연구는 에너지 소비를 최소화 하는데 그 목표를 두고 있다. 이를 위해 기존연구에서 필터링 기법이 제안되었다. 하지만 기존 필터링 기법은 일회성 질의에 초점을 맞추고 있고, 상위 노드의 정보만을 활용하기 때문에 그 성능의 한계가 있다. 본 논문에서는 연속스카이라인 질의 처리를 위한 상향식 필터링 투플 선정 방법을 제안한다. 하위노드에서 생성된 이전 스카이라인 정보를 각 센서노드에 저장하고, 필터링 투플 선정에 활용함으로써 불필요한 데이터 통신을 감소시킬 수 있다. 이와 더불어 추가 필터링 투플을 선택할 때 사용될 수 있는 SFT(Support Filtering Tuple)방법을 제안한다. 센서 데이터의 경우, 이전 센싱된 데이터와 현재 데이터 간의 시간 관계성(temporal correlation)의 특징을 갖고 있다. SFT 방법은 저장된 과거 데이터를 기반으로 현재데이터를 예측하여 추가 필터링 투플을 선정하여 필터링 성능을 향상시킨다. 실험 결과를 통해, 제안하는 방법들이 기존 방법에 비해 데이터 감소율과 총 통신량 측면에서 효율적임을 보여준다.

    영어초록

    Skyline Query processing is important to wireless sensor applications in order to process multi-dimensional data efficiently. Most skyline researches about sensor network focus on minimizing the energy consumption due to the battery powered constraints. In order to reduce energy consumption, Filtering Method is proposed. Most existing researches have assumed a snapshot skyline query processing and do not consider continuous queries and use data generated in ancestor node. In this paper, we propose an energy efficient method called Bottom up filtering tuple selection for continuous skyline query processing. Past skyline data generated in child nodes are stored in each sensor node and is used when choosing filtering tuple. We also extend the algorithms, called Support filtering tuple(SFT) that is used when we choose the additional filtering tuple. There is a temporal correlation between previous sensing data and recent sensing data. Thus, Based on past data, we estimate current data. By considering this point, we reduce the unnecessary communication cost. The experimental results show that our method outperforms the existing methods in terms of both data reduction rate(DRR) and total communication cost.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 데이타베이스”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:31 오전